Safety of enhanced renin–angiotensin–aldosterone system inhibition with aliskiren in nondiabetic patients with chronic kidney disease

Sławomir Lizakowski¹, Leszek Tylicki¹, Przemysław Rutkowski¹,², Marcin Renke³, Beata Sulikowska¹, Zbigniew Heleniak¹, Rafał Donderski⁴, Rafał Bednarski⁴, Milena Przybylska¹, Jacek Manitius⁴, Bolesław Rutkowski¹

¹ Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
² Department of General Nursing, Medical University of Gdańsk, Gdańsk, Poland
³ Department of Occupational and Internal Diseases, Medical University of Gdańsk, Gdańsk, Poland
⁴ Department of Nephrology, Hypertension and Internal Diseases, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland

ABSTRACT

INTRODUCTION Various methods of combination renin–angiotensin–aldosterone system blockade help achieve more potent antiproteinuric effects, but may be associated with higher risk of side effects. Therapies involving direct renin inhibitor, aliskiren, may promote renal fibrosis by stimulating (pro)renin receptor due to increased renin levels.

OBJECTIVES The aim of the study was to compare the effects of combination treatment with angiotensin receptor blockers, telmisartan (80 mg/d) and aliskiren (300 mg/d) with those of combination treatment with 80 mg/d telmisartan and mineralocorticoid receptor blocker (50 mg/d eplerenone) and telmisartan (160 mg/d) alone on the urinary excretion of transforming growth factor β₁ (TGF-β₁), renal function, and serum potassium levels.

PATIENTS AND METHODS A randomized open-label controlled cross-over study was performed in 18 white patients (7 women and 11 men; mean age, 42.4 ± 1.9 years) with proteinuric nondiabetic chronic kidney disease and estimated glomerular filtration rate of 85.2 ± 4.6 ml/min.

RESULTS The urinary excretion of TGF-β₁ was stable despite a significant increase in plasma renin levels after treatment with telmisartan and aliskiren. There were no differences in renal function and serum potassium levels between the compared treatments. Moreover, there were no episodes of hypotension or acute renal impairment.

CONCLUSIONS Combination therapy with telmisartan and aliskiren may be safe in young nondiabetic patients with normal renal function at low vascular risk. This treatment may be an alternative for a subset of patients in whom standard RAA system blockade is ineffective.

KEYWORDS aliskiren, chronic kidney disease, proteinuria, renin–angiotensin–aldosterone system
To convert serum creatinine to mol/l, multiply by 88.4; eGFR in ml/min/1.73 m² to confidence interval).

Table 1: Baseline characteristics of the study group (n = 18)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Study group</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex, female/male</td>
<td>4/14</td>
</tr>
<tr>
<td>age, y</td>
<td>39.3 ± 2.7</td>
</tr>
<tr>
<td>mean 24-hour SBP, mmHg</td>
<td>116.8 ± 2.4</td>
</tr>
<tr>
<td>mean 24-hour DBP, mmHg</td>
<td>73.8 ± 1.8</td>
</tr>
<tr>
<td>24-hour proteinuria, g</td>
<td>1.62 (0.98–2.26)</td>
</tr>
<tr>
<td>serum creatinine, mg/dl</td>
<td>1.1 ± 0.11</td>
</tr>
<tr>
<td>eGFR CKD-EPI, ml/min/1.73 m²</td>
<td>85.2 ± 6.4</td>
</tr>
<tr>
<td>serum potassium, mmol/l</td>
<td>4.47 ± 0.1</td>
</tr>
<tr>
<td>body mass index, kg/m²</td>
<td>26.4 ± 0.79</td>
</tr>
<tr>
<td>background hypertensive therapy, n (%)</td>
<td></td>
</tr>
<tr>
<td>ACEIs and ARBs</td>
<td>8 (44.5)</td>
</tr>
<tr>
<td>ACEIs (alone)</td>
<td>4 (22.5)</td>
</tr>
<tr>
<td>ARBs (alone)</td>
<td>2 (11)</td>
</tr>
<tr>
<td>none</td>
<td>4 (22)</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± standard error of the mean or geometric mean (95% confidence interval).

To convert serum creatinine to μmol/l, multiply by 88.4; eGFR in ml/min/1.73 m² to ml/s/1.73 m², multiply by 0.01667.

Abbreviations: ACEI – angiotensin-converting enzyme inhibitor, ARB – angiotensin II receptor blocker, CKD-EPI – Chronic Kidney Disease Epidemiology Collaboration, DBP – diastolic blood pressure, eGFR – estimated glomerular filtration rate, SBP – systolic blood pressure

General protocol

This was a double-center, prospective, randomized, double-blind, cross-over study assessing the safety of an 8-week combination of telmisartan (80 mg) and eplerenone (50 mg) once a day (OD) (A) as compared with the combination of telmisartan (80 mg) and aliskiren (300 mg) OD (B) and telmisartan (160 mg) OD (C). Initially, subjects who met the inclusion criteria entered the 8-week run-in period during which any hypertensive agents previously used were stopped and BP was controlled by the background therapy with combination of telmisartan (80 mg) and perindopril (10 mg) OD (P1 period). At the end of the run-in period, subjects were randomly allocated to 1 of 6 treatment sequences: ABC, ACB, BAC, BCA, CAB, CBA (FIGURE 1). For ethical reasons, there was no washout between the run-in period and 3 treatment therapies or between the treatments in each sequence. At the end, the same 8-week background therapy as in the run-in period was administered (P5 period). Preparing, labeling, and blinding of the study medications was performed by the Department of Pharmaceutical Technology, Medical University of Gdańsk. Patients were instructed to take the study medication once a day in the morning. The doses were not changed. Patients were recommended not to change their usual daily protein and sodium intake during the study period.

At the end of each of the 3 treatment periods (A, B, C) and after both background therapies (P1 and P5), urine excretion of transforming growth factor β1 (TGF-β1), 24-hour ambulatory BP, serum concentration of creatinine and potassium, plasma concentration of prorenin and renin were measured and eGFR was calculated. Patients discontinued the trial in the case of consent withdrawal, noncompliance, hyperkalemia above 6.0 mmol/L, or decompensated congestive heart failure in the previous 6 months, with an episode of malignant hypertension or stroke in history, with diabetes, and those with estimated GFR (eGFR) of less than 30 ml/min/1.73 m² were excluded from the study.

A total of 18 patients were enrolled to the study. CKD was caused by IgA nephropathy in 5 patients, membranous glomerulonephritis in 3 patients, focal segmental glomerulosclerosis in 3 patients, mesangial glomerulonephritis in 1 patient, minimal change nephropathy in 1 patient, and mesangiocapillary glomerulonephritis in 1 patient. In 2 patients, the diagnosis of chronic glomerulonephritis was based on clinical symptoms and laboratory findings. Prior to enrollment, 1 patient was treated with an ACEI, ARB, and diuretic; 7 patients with an ACEI and ARB; 3 patients only with an ACEI; and 3 patients did not receive any hypertensive or renoprotective treatment. Additionally, 6 patients received statins and 2 patients were treated with a β-blocker.

All patients who entered the study completed the study. Baseline clinical characteristics of the patients are presented in TABLE 1.

Patients and Methods

Patients

Patients were selected from the cohort that attended the Outpatient Renal Clinic at the Medical University of Gdańsk and Ludwik Rydygier Collegium Medicum of the Nicolaus Copernicus University in Bydgoszcz, Poland. The inclusion criteria were as follows: age 18–65 years, proteinuric nondiabetic CKD stages 1–3, stable proteinuria above 500 mg/24 h in the last 6 months (no variations above 500 mg/24 h), hypertension treated with at least 1 agent or untreated hypertension with blood pressure (BP) above 140/90 mmHg, and no steroids or other immunosuppressive treatment for the minimum of 6 months before the study. Patients with unstable coronary heart disease or decompensated congestive heart failure in the previous 6 months, with an episode of malignant hypertension or stroke in history, with diabetes, and those with estimated GFR (eGFR) of less than 30 ml/min/1.73 m² were excluded from the study.
The plasma concentration of prorenin was measured by the ELISA (BioVendor Research and Diagnostic Products, Czech Republic). Human prorenin binds to the capture antibody coated on the microtiter plate. After appropriate washing steps, antihuman prorenin primary antibody was bound to the captured protein. Only prorenin and inactive renin was detected by the primary antibody. The excess antibody was washed away, and the bound primary antibody was then reacted with the secondary antibody conjugated to the horseradish peroxidase. The TMB (3,3',5,5'-tetramethylbenzidine) substrate was used for color development at 450 nm. A standard calibration curve was prepared along with the samples using dilutions of prorenin. The amount of color development was directly proportional to the concentration of prorenin in the sample. The assay measures human prorenin in the range of 0.01–10 ng/ml.

Creatinine and potassium levels were measured using standard methods. eGFR was calculated according to the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Side effects of therapies were monitored by questionnaires.

Ambulatory BP was measured continuously for 24 hours using the Mobil-o-graph (version 12) monitoring system. BP was measured every 15 minutes during the day (from 7:00 a.m. to 10:00 p.m.) and every 30 minutes during the night (from 10:00 p.m. to 7:00 a.m.). The results of ambulatory BP measurements were presented as the mean arterial pressure (MAP).

Statistics In the per-protocol design, the variable differences were assessed by the analysis of variance (ANOVA) for repeated measurements with the Bonferroni corrections for paired comparisons. Head-to-head comparisons between study therapies and background treatment with worsening of renal function defined by a decrease from baseline eGFR greater than 30% and confirmed on 2 occasions, any other severe adverse events associated with treatment, for example, cough or angioedema on ACEI therapy. The study was approved by the local ethics committee, and all patients provided written informed consent. The study was registered at www.clinicaltrial.gov (identifier: NCT 01541267).
3) per sequence were randomized. Since no patients were prematurely withdrawn, this balance was fully respected at the end of the study.

RESULTS

We observed no differences in the urinary excretion of TGF-β1 between the therapies (Table 2, Figure 2). Moreover, there were no differences in plasma prorenin concentrations between treatments, while plasma renin concentration was significantly higher after therapy with aliskiren 300 and telmisartan 80 mg as compared with other therapies (ANOVA, \(P < 0.001 \)) (Table 2). Renal function assessed by eGFR remained stable during the study. There were no episodes of acute impairment of renal function. No differences in serum potassium concentrations were observed between the treatments (Table 3). There were no differences in MAP between the treatments. BP was stable during the entire study and no hypertonic episodes were observed (Table 3). All therapies were well-tolerated by patients. Adverse effects were not reported in questionnaires.

TABLE 2 Plasma renin and prorenin concentrations and urinary transforming growth factor β1 / creatinine during the study

<table>
<thead>
<tr>
<th>Variable</th>
<th>Telmisartan + perindopril (P1)</th>
<th>Telmisartan + eplerenone (A)</th>
<th>Telmisartan + aliskiren (B)</th>
<th>Telmisartan 160 mg (C)</th>
<th>Telmisartan + perindopril (P2)</th>
<th>ANOVA (A vs. B vs. C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>plasma prorenin, ng/ml</td>
<td>3.59 (2.0–9.84)</td>
<td>2.74 (1.78–7.57)</td>
<td>2.98 (2.41–5.17)</td>
<td>3.16 (2.43–6.15)</td>
<td>2.86 (2.23–5.32)</td>
<td>NS ((P = 0.58))</td>
</tr>
<tr>
<td>plasma renin, pg/ml</td>
<td>154** (358–751)</td>
<td>73* (176–369)</td>
<td>469 (418–875)</td>
<td>90** (192–403)</td>
<td>133** (324–679)</td>
<td>(P < 0.001)</td>
</tr>
<tr>
<td>urinary TGF-β1 / creatinine, pg/mg</td>
<td>17.2 (5.2–10.9)</td>
<td>14.5 (6.3–13.1)</td>
<td>16.7 (6.0–12.6)</td>
<td>17.0 (6.2–13.1)</td>
<td>14.9 (7.3–15.2)</td>
<td>NS ((P = 0.27))</td>
</tr>
</tbody>
</table>

Data are expressed as the geometric mean (95% confidence interval).

a post-hoc \(P < 0.001 \) (A vs. B), b post-hoc \(P < 0.001 \) (C vs. B), c significant vs. A (t test; \(P < 0.05 \)), d significant vs. B (t test; \(P < 0.05 \)), e significant vs. C (t test; \(P < 0.05 \))

Abbreviations: ANOVA – analysis of variance, NS – nonsignificant, TGF-β1 – transforming growth factor β1

telmisartan plus perindopril, as secondary analyses, were performed using the t test. A \(P \) less than 0.05 (2-tailed) was considered statistically significant. Data were evaluated using a STATISTICA software package (version 9.0 Stat Soft Inc.). The results were expressed as means ± standard error of the mean.

To prevent or limit the risk of a “carry-over effect”, we planned each treatment period for 8 weeks. Previous studies demonstrated that the effects of RAA system blocking agents on the kidney are fully reversible within 4 weeks. Thus, prolonging each treatment period to 8 weeks allowed us to rule out any residual effect of previous treatment at the end of the eighth week, when analyses were performed. To prevent or limit the possibility of a “period effect”, we introduced a degree of balance into the study design, with a scheme of randomization allowing every treatment sequence to be represented in every period with the same frequency. Overall, we had 6 different therapy sequences with 3 treatment periods (Figure 1). Equal numbers of patients (\(n = 3 \)) per sequence were randomized. Since no patients were prematurely withdrawn, this balance was fully respected at the end of the study.

FIGURE 2 Plasma renin and prorenin concentrations and urinary transforming growth factor β1 (TGF-β1) / creatinine during the study

a \(P < 0.001 \) vs. A vs. C
TABLE 3 Mean arterial pressure and laboratory tests during the study

<table>
<thead>
<tr>
<th>Variable</th>
<th>Telmisartan + perindopril (P1)</th>
<th>Telmisartan + eplerenone (A)</th>
<th>Telmisartan + aliskiren (B)</th>
<th>Telmisartan 160 mg (C)</th>
<th>Telmisartan + perindopril (P2)</th>
<th>ANOVA (A vs. B vs. C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-hour MAP, mmHg</td>
<td>102.5 ±8.6</td>
<td>106.5 ±9.4</td>
<td>104.5 ±10.2</td>
<td>105.7 ±8.8</td>
<td>103.8 ±8.2</td>
<td>NS</td>
</tr>
<tr>
<td>24-hour proteinuria, g</td>
<td>1.63</td>
<td>2.18</td>
<td>1.77</td>
<td>1.98</td>
<td>1.84</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(0.92–1.93)</td>
<td>(0.94–1.97)</td>
<td>(0.85–1.78)</td>
<td>(0.86–1.81)</td>
<td>(1.09–2.28)</td>
<td></td>
</tr>
<tr>
<td>eGFR CKD-EPI, ml/min</td>
<td>86.7 ±6.9</td>
<td>90.7 ±7.1</td>
<td>89.7 ±7.1</td>
<td>90.4 ±7.0</td>
<td>90.2 ±7.6</td>
<td>NS</td>
</tr>
<tr>
<td>serum potassium, mmol/l</td>
<td>4.47 ±0.1</td>
<td>4.28 ±0.08</td>
<td>4.56 ±0.13</td>
<td>4.45 ±0.1</td>
<td>4.43 ±0.11</td>
<td>NS</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± standard error of the mean.

eGFR CKD-EPI = 141 × min(Scr/κα) × max(Scr/κα–1)–1.209 × 0.993 age × 1.018 [if female] × 1.159 [if black]

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>eGFR CKD-EPI</th>
<th>24-hour MAP</th>
<th>24-hour proteinuria</th>
<th>eGFR CKD-EPI</th>
<th>24-hour MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Telmisartan</td>
<td>86.7 ±6.9</td>
<td>102.5 ±8.6</td>
<td>1.63</td>
<td>86.7 ±6.9</td>
<td>102.5 ±8.6</td>
</tr>
<tr>
<td>A</td>
<td>Telmisartan</td>
<td>90.7 ±7.1</td>
<td>106.5 ±9.4</td>
<td>2.18</td>
<td>90.7 ±7.1</td>
<td>106.5 ±9.4</td>
</tr>
<tr>
<td>B</td>
<td>Telmisartan</td>
<td>89.7 ±7.1</td>
<td>104.5 ±10.2</td>
<td>1.77</td>
<td>89.7 ±7.1</td>
<td>104.5 ±10.2</td>
</tr>
<tr>
<td>C</td>
<td>Telmisartan</td>
<td>90.4 ±7.0</td>
<td>105.7 ±8.8</td>
<td>1.98</td>
<td>90.4 ±7.0</td>
<td>105.7 ±8.8</td>
</tr>
<tr>
<td></td>
<td>Telmisartan</td>
<td>90.2 ±7.6</td>
<td>103.8 ±8.2</td>
<td>1.84</td>
<td>90.2 ±7.6</td>
<td>103.8 ±8.2</td>
</tr>
<tr>
<td></td>
<td>Perindopril</td>
<td>90.2 ±7.6</td>
<td>103.8 ±8.2</td>
<td>1.84</td>
<td>90.2 ±7.6</td>
<td>103.8 ±8.2</td>
</tr>
</tbody>
</table>

DISCUSSION In 2008, the ONTARGET study demonstrated that dual therapy with ACEIs and ARBs had no additional cardiovascular benefit, did not reduce chronic dialysis or doubling of serum creatinine but exhibited infrequent but life-threatening adverse events, including acute kidney injury and hyperkalemia in patients at high vascular risk. Similarly, the recently conducted Quite ALTITUDE study performed in diabetic was terminated prematurely due to lack of efficacy and risk of renal impairment, hyperkalemia, and nonfatal stroke in patients taking aliskiren plus ACEIs or ARBs. Therefore, the effect of our intervention with aliskiren on BP, renal function, and potassium concentration in nondiabetic patients with CKD is particularly interesting. We demonstrated that all combination RAA system blockades did not cause significant hyperkalemia, episodes of hypotonia, or acute fall in the eGFR. These therapies were also quite well-tolerated and no significant side effects were reported. Therefore, they may be alternative strategies in the population of patients in whom standard RAA system blockade does not produce a sufficient renal effect.

However, our study has several limitations including a small sample size, a relatively short follow-up, and selected population of only young nondiabetic individuals with quite good renal function and without cardiovascular complications.

Our results are interesting also from another point of view. Although RAA system blocking agents were confirmed to have a potent antiproteinuric effect in CKD, a question has been raised whether the increased concentration of renin induced by enhanced RAA system blockade, notably involving DRI, might promote renal fibrosis via the activation of (pro)renin receptors. Both prorenin and renin were found to stimulate TGF-β1 production via MAPK p42/p44 in this way, which subsequently resulted in the upregulation of profibrotic and prothrombotic molecules such as fibronectin, collagen-1, and plasminogen-activator inhibitor. All RAA system blockers cause a reactive rise in renin and prorenin concentrations, but the largest increase is observed with DRI therapy. In the present study, the highest values of plasma renin were also observed during the combination therapy with ARB (telmisartan) and DRI (aliskiren). One might expect that this would result in increased (pro)renin receptor activation, leading to potential detrimental effects. However, no such effects were observed in the study. Urinary TGF-β1 excretion did not change during any of the treatments.

Previously, the authors did not show an increase of TGF-β1 synthesis in patients with CKD treated with aliskiren as monotherapy. A possible explanation for the lack of such detrimental effects was provided by Schefe et al. who showed that on activation of the (pro)renin receptor, the transcription factor promyelocytic zinc finger is translocated to the nucleus and represses the transcription of the (pro)renin receptor itself, thus creating a short negative feedback loop. In other words, high (pro)renin levels, as occurring during the RAA system blockade, will suppress (pro)renin receptor expression, thereby preventing excessive receptor activation. In addition, aliskiren was shown to reduce the expression of (pro)renin receptors.

In conclusion, we demonstrated that enhanced RAA system blockade with telmisartan and aliskiren may be safe in young nondiabetic patients with CKD stages 1 and 2 and low cardiovascular risk.

REFERENCES

14 Izzo JL Jr. Benefits of antihypertensive drugs when blood pressure is below 140/90 mmHg. Pol Arch Med Wewn. 2011; 121: 303-308.

15 Danser AH. The increase in renin during renin inhibition: does it result in harmful effects by the (pro)renin receptor? Hypertens Res. 2010; 33: 4-10.

16 Danser AH. The increase in renin during renin inhibition: does it result in harmful effects by the (pro)renin receptor? Hypertens Res. 2010; 33: 4-10.

17 Mann JF, Schmieder RE, McQueen M, et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008; 372: 547-553.

Bezpieczeństwo skojarzonej blokady układu renina–angiotensyna–aldosteron
z zastosowaniem aliskirenu u chorych
z niecukrzycową przewlekłą chorobą nerek

Sławomir Lizakowski¹, Leszek Tylicki¹, Przemysław Rutkowski¹,², Marcin Renke³, Beata Sulikowska¹, Zbigniew Heleniak¹, Rafał Donderski⁴, Rafał Bednarski⁴, Milena Przybylska¹, Jacek Manitius⁴, Bolesław Rutkowski¹

¹ Katedra i Klinika Nefrologii, Transplantologii i Chorób Wewnętrznych, Gdański Uniwersytet Medyczny, Gdańsk
² Katedra Pielęgniarstwa Ogólnego, Gdański Uniwersytet Medyczny, Gdańsk
³ Klinika Chorób Zawodowych i Wewnętrznych, Gdański Uniwersytet Medyczny, Gdańsk
⁴ Katedra Nefrologii, Nadciśnienia Tętniczego i Chorób Wewnętrznych, Uniwersytet Mikołaja Kopernika, Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy, Bydgoszcz

STRESZCZENIE

Różne metody skojarzonej blokady układu renina-angiotensyna-aldosteron (RAA) pozwalają zwiększyć redukcję białkomocz, ale mogą się wiązać ze zwiększonym ryzykiem wystąpienia objawów ubocznych. Terapia z zastosowaniem bezpośredniego inhibitora reniny, aliskirenu, może predysponować do włóknienia nerek poprzez pobudzenie receptora dla (pro)reniny w następstwie zwiększonego stężenia reniny.

CELE

Celem badania było porównanie wpływu łączonej terapii blokerem receptora angiotensyny II (telmisartanem 80 mg/d i aliskirenem 300 mg/d) ze skojarzoną terapią temisartanem 80 mg/d z blokerem receptora mineralokortykoidowego (eplerenonem 50 mg/d) oraz samym telmisartanem 160 mg/d na wydalanie z moczem transformującego czynnika wzrostu β (transforming growth factor β – TGF-β), funkcję nerek i stężenie potasu w surowicy.

PACjENTI I METODY

Randomizowane, kontrolowane, podwójnie ślepe badanie typu cross-over przeprowadzono u 18 chorych rasy białej (7 kobiet i 11 mężczyzn; średnia wieku 42,4 ± 1,9 roku) z niecukrzycową przewlekłą chorobą nerek oraz szacowanym współczynnikiem przesączania kłębuszkowego 85,2 ± 4,6 ml/min.

WYNIKI

Wydalanie z moczem TGF-β było stabilne w trakcie badania mimo znaczącego wzrostu stężenia reniny w surowicy w czasie skojarzonej terapii telmisartanem i aliskirenem. Nie stwierdzono różnic w funkcji nerek, stężeniu potasu oraz wartości ciśnienia tętniczego między porównywanymi terapiami. Ponadto nie obserwowano epizodów niedociśnienia oraz ostrej niewydolności nerek.

WNIOSKI

Łączona terapia telmisartanem i aliskirenem jest bezpieczna u młodych pacjentów z cukrzycą z prawidłową funkcją nerek i małym ryzykiem naczyniowym. Leczenie to może być alternatywą dla wybranej grupy chorych, u których standardowa blokada układu RAA nie jest skuteczna.

SŁOWA KLUCZOWE

aliskiren, białkomocz, przewlekła choroba nerek, układ renina–angiotensyna–aldosteron

Adres do korespondencji:
dr hab. med. Sławomir Lizakowski, Katedra i Klinika Nefrologii, Transplantologii i Chorób Wewnętrznych, Gdański Uniwersytet Medyczny, ul. Dębski 7, 80-211 Gdańsk, tel.: 58-349-25-05, fax: 58-346-11-86, e-mail: alisk@gambar.edu.pl
Publikacja online: 25.04.2013.
Nie zgłoszono sprzeczności interesów.
Copyright by Medycyna Praktyczna, Kraków 2013