Association of serum resistin with peripheral arterial disease

Huan Zheng¹, Huifeng Xu², Nanzi Xie¹, Junling Huang¹, Hong Fang², Ming Luo¹

1 Department of Geriatrics, Tongji Hospital Affiliated to Tongji University, Shanghai, China
2 Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Shanghai, China

ABSTRACT

INTRODUCTION Resistin is an inflammatory mediator and a potential biomarker in cardiovascular diseases.

OBJECTIVES We sought to examine its association with peripheral arterial disease (PAD).

PATIENTS AND METHODS We recruited 200 patients with PAD and 100 healthy controls. Patients were divided into 4 subgroups according to the Fontaine classification for PAD, that is, from Stage I to Stage IV. Serum resistin levels were compared between the PAD group and the control group and among 4 PAD subgroups adjusted for selected factors.

RESULTS Serum resistin (Ln-resistin – log scale) levels and high-sensitivity C-reactive protein (hsCRP) levels in patients with PAD were higher than in healthy controls ($P < 0.05$). Moreover, among the 4 PAD subgroups, the value of Ln-resistin in Stage I subgroup was the lowest, and Stage II subgroup had lower Ln-resistin than Stage III subgroup or Stage IV subgroup ($P < 0.05$). There was also a significant difference in hsCRP levels among those 4 subgroups ($P < 0.05$). In PAD patients, Ln-resistin levels correlated inversely with the ankle–brachial pressure index ($r = -0.301$, $P < 0.05$), and positively with total cholesterol levels ($r = 0.228$, $P < 0.01$). Moreover, a multivariate analysis showed Ln-resistin levels to be an independent risk factor for PAD (odds ratio, 1.237; 95% confidence interval, $1.086–1.396$; $P < 0.01$).

CONCLUSIONS Ln-resistin levels and hsCRP are elevated in PAD patients, and they rise as the severity of PAD increases. A multivariate analysis suggests that Ln-resistin could be a prognostic biomarker for the presence of PAD.

KEY WORDS atherosclerosis, peripheral arterial disease, resistin, risk factor
PATIENTS AND METHODS

Participants The study was conducted on 200 consecutive PAD patients who attended the outpatient department of our institution and who did not receive any revascularization treatment for peripheral arteries. The diagnosis of PAD was confirmed by clinical symptoms or signs, ankle-brachial pressure index (ABPI) of <0.9, and atherosclerotic stenosis or occlusion of the arteries in the lower extremities identified by color Doppler ultrasound, computed-tomography angiography, magnetic resonance angiography, or digital subtraction angiography. All PAD patients were then divided into 4 subgroups according to the Fontaine classification for PAD,16 i.e., Stage I – asymptomatic; Stage II – intermittent claudication; Stage III – resting pain; Stage IV – ischemic ulcers or gangrene. The control group consisted of 100 healthy volunteers who attended an annual checkup at our hospital. The control participants had no cardiovascular or any other organ system disease, and had normal results in their physical examination, chest radiography, electrocardiogram, echocardiogram, and duplex ultrasonography.

The exclusion criteria were: diabetes mellitus, acute coronary syndrome, compensated heart failure, cardiomyopathy, valvular heart disease, cerebral stroke, Buerger’s disease, severe renal failure, cardiomyopathy, valvular heart disease, and autoimmune diseases. The study was approved by the local ethical committee and written informed consent was obtained from all patients.

Clinical data Patients’ data were collected, including age, sex, body mass index (BMI), smoking habit, systolic blood pressure (SBP), diastolic blood pressure (DBP), cardiovascular disease history, and current medications. SBP and DBP were measured 3 times on the right arm after a 10-minute rest in the supine position using a standard mercury sphygmomanometer and the average reading was calculated. Hypertension was defined as an SBP of greater than 140 mmHg and/or a DBP of greater than 90 mmHg on repeated measurements and/or receiving antihypertensive treatment. CAD was defined as angina and/or electrocardiogram signs of ischemia during the treadmill-exercise test and/or positive findings on coronary angiography.

Laboratory measurements A venous blood sample was collected from each participant under fasting conditions. Fasting blood glucose, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglyceride, and high-sensitivity C-reactive protein (hsCPR) levels were recorded. Resistin levels were measured by an enzyme-linked immunosorbent assay (ELISA) using commercially available kits (R&D systems Inc., Minneapolis, MN, United States). The intra-assay and interassay coefficients of variation were 5.1% and 8.6%, respectively. All tests for each sample were performed in a random order by technicians who were unaware of which group the sample belonged to.

Statistical analysis All numeric variables were expressed as mean ± standard deviation, and categorical data were expressed as numbers (n) and percentage in parentheses. Data were tested for normal distribution using the Kolmogorov–Smirnov test. Logarithmic (Ln) transformation of serum resistin concentration (ng/ml) was required because the data were not normally distributed. The Student’s t test was used for the univariate analysis of normally distributed continuous numerical variables, and the χ² test for the categorical variables. Ln-resistin values, according to the health status and PAD stage, were compared using multiple regressions adjusted for sex, age, smoking, history of hypertension, history of CAD, total cholesterol, and hsCRP to determine the significant factors indicating the presence of PAD. All tests of significance were two-tailed. Statistical significance was defined as P < 0.05. The SPSS statistical software (SPSS15.0, Inc., Chicago, Illinois, United States) was used in all statistical calculations.

RESULTS The clinical characteristics of the study population were detailed in Table 1. In the PAD group, 67.5% of the participants were male and in the control group 54% were male (P < 0.01). The PAD group contained a higher percentage of smokers, hypertension patients, and CAD patients compared with the control group (56.5% vs. 48%, P < 0.05; 58% vs. 0%, P < 0.001; 74.5% vs. 0%, P < 0.001; respectively). Age, BMI, total cholesterol, low-density lipoprotein cholesterol, SBP, DBP, and hsCRP levels were higher in the PAD group than in the control group (P < 0.05). There were no differences between the 2 groups with respect to high-density lipoprotein cholesterol, triglyceride, or fasting glucose levels (P > 0.05). Ln-resistin (ng/ml) was higher in the PAD group than in the control group (1.86 ±0.57 vs. 1.38 ±0.42, P < 0.05). In the 4 PAD subgroups, the value of Ln-resistin was significantly lower in patients with Stage I than in any of the other 3 subgroups. Although there was no significant difference between Stage III and Stage IV subgroups, both subgroups had higher Ln-resistin than the Stage II subgroup (Figure 1). Meanwhile, the hsCRP level rose as the grade of PAD increased.

The levels of Ln-resistin correlated inversely with the ABPI (r = −0.301, P < 0.05; Figure 2) and positively with total cholesterol levels (r = 0.228, P < 0.01) in PAD patients but not in controls. Moreover, a multivariable
TABLE 1 Clinical characteristics of the participants

<table>
<thead>
<tr>
<th></th>
<th>Controls (n = 100)</th>
<th>Total PAD patients (n = 200)</th>
<th>Stage I (n = 6)</th>
<th>Stage II (n = 93)</th>
<th>Stage III (n = 82)</th>
<th>Stage IV (n = 19)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>male, (n, %)</td>
<td>54 (54)</td>
<td>135 (67.5)</td>
<td>2 (33.3)(^{b})</td>
<td>55 (59.1)(^{b})</td>
<td>66 (80.5)(^{a-c})</td>
<td>12 (63.2)(^{a-c})</td>
<td>0.004</td>
</tr>
<tr>
<td>age, y</td>
<td>43.6 (8.7)</td>
<td>65.7 (6.9)</td>
<td>67.4 (7.1)(^{b})</td>
<td>62.3 (8.0)(^{b})</td>
<td>66.2 (8.5)(^{b})</td>
<td>64.7 (9.3)(^{b})</td>
<td>0.003</td>
</tr>
<tr>
<td>BMI, kg/m(^2)</td>
<td>21.6 (3.1)</td>
<td>24.1 (4.2)</td>
<td>22.7 (5.6)(^{b})</td>
<td>24.9 (4.8)(^{b})</td>
<td>23.2 (5.3)(^{b})</td>
<td>25.0 (6.1)(^{b})</td>
<td>0.021</td>
</tr>
<tr>
<td>history of hypertension</td>
<td>0 (0)</td>
<td>116 (58)</td>
<td>3 (50)(^{b})</td>
<td>55 (58.1)(^{b,c})</td>
<td>42 (51.2)(^{c})</td>
<td>14 (73.7)(^{b,c})</td>
<td><0.001</td>
</tr>
<tr>
<td>CAD history</td>
<td>0 (0)</td>
<td>119 (74.5)</td>
<td>4 (66.7)(^{b})</td>
<td>61 (65.6)(^{b})</td>
<td>69 (84.1)(^{a-c})</td>
<td>15 (78.9)(^{a-c})</td>
<td><0.001</td>
</tr>
<tr>
<td>smoker (n, %)</td>
<td>48 (48)</td>
<td>113 (56.5)</td>
<td>3 (50)(^{b})</td>
<td>62 (58.1)(^{b,c})</td>
<td>42 (51.2)(^{c})</td>
<td>13 (72.4)(^{b,c})</td>
<td><0.001</td>
</tr>
<tr>
<td>ASA (n, %)</td>
<td>0 (0)</td>
<td>132 (66)</td>
<td>3 (50)(^{b})</td>
<td>62 (66.7)(^{b})</td>
<td>57 (69.5)(^{a-c})</td>
<td>10 (52.6)(^{a-c})</td>
<td><0.001</td>
</tr>
<tr>
<td>ACEI/ARB (n, %)</td>
<td>0 (0)</td>
<td>121 (60.5)</td>
<td>4 (66.7)(^{b})</td>
<td>55 (59.1)(^{b})</td>
<td>49 (59.1)(^{b})</td>
<td>13 (68.4)(^{b})</td>
<td><0.001</td>
</tr>
<tr>
<td>β-blocker (n, %)</td>
<td>0 (0)</td>
<td>97 (48.5)</td>
<td>2 (33.3)(^{b})</td>
<td>41 (44.1)(^{b})</td>
<td>42 (51.2)(^{b})</td>
<td>12 (63.2)(^{a-c})</td>
<td><0.001</td>
</tr>
<tr>
<td>CCB (n, %)</td>
<td>0 (0)</td>
<td>127 (63.5)</td>
<td>3 (50)(^{b})</td>
<td>60 (64.5)(^{b})</td>
<td>52 (63.4)(^{a})</td>
<td>12 (63.2)(^{a-c})</td>
<td><0.001</td>
</tr>
<tr>
<td>statin (n, %)</td>
<td>0 (0)</td>
<td>84 (42)</td>
<td>2 (33.3)(^{b})</td>
<td>30 (32.3)(^{b})</td>
<td>42 (51.2)(^{b,c})</td>
<td>10 (52.6)(^{b,c})</td>
<td><0.001</td>
</tr>
<tr>
<td>HDL cholesterol, mg/dl</td>
<td>45.6 (9.0)</td>
<td>46.8 (7.1)</td>
<td>48.8 (5.9)(^{b})</td>
<td>47.3 (8.2)(^{b})</td>
<td>45.4 (7.6)(^{b})</td>
<td>44.2 (5.8)(^{b})</td>
<td>0.283</td>
</tr>
<tr>
<td>triglyceride, mg/dl</td>
<td>132.6 (16.2)</td>
<td>136.1 (12.4)</td>
<td>140.3 (8.0)(^{b})</td>
<td>136.7 (9.3)(^{b})</td>
<td>140.3 (11.7)(^{b})</td>
<td>135.4 (7.5)(^{b})</td>
<td>0.402</td>
</tr>
<tr>
<td>fasting glucose, mg/dl</td>
<td>96.2 (8.3)</td>
<td>94.1 (7.4)</td>
<td>89.3 (6.2)(^{b})</td>
<td>97.4 (10.3)(^{b})</td>
<td>93.5 (8.7)(^{b})</td>
<td>101.3 (7.7)(^{b})</td>
<td>0.179</td>
</tr>
<tr>
<td>total cholesterol, mg/dl</td>
<td>180.6 (16.2)</td>
<td>214.3 (17.8)</td>
<td>206.7 (11.4)(^{b})</td>
<td>212.5 (13.9)(^{b})</td>
<td>215.9 (14.6)(^{b})</td>
<td>221.4 (13.5)(^{b})</td>
<td>0.034</td>
</tr>
<tr>
<td>LDL cholesterol, mg/dl</td>
<td>84.3 (15.4)</td>
<td>119.7 (16.1)</td>
<td>118.4 (9.2)(^{b})</td>
<td>117.2 (10.6)(^{b})</td>
<td>121.5 (11.7)(^{b})</td>
<td>120.3 (12.5)(^{b})</td>
<td>0.005</td>
</tr>
<tr>
<td>hsCRP, mg/l</td>
<td>7.9 (6.2)</td>
<td>86.1 (9.4)</td>
<td>82.4 (5.8)(^{b})</td>
<td>87.5 (8.2)(^{b,c})</td>
<td>84.9 (10.3)(^{b})</td>
<td>84.6 (7.6)(^{b})</td>
<td>0.006</td>
</tr>
<tr>
<td>Lp(a), mg/l</td>
<td>2.6 (1.8)</td>
<td>11.5 (4.6)</td>
<td>6.2 (1.4)(^{b})</td>
<td>10.8 (3.6)(^{b,c})</td>
<td>11.7 (4.7)(^{b,c})</td>
<td>12.8 (3.1)(^{b,c})</td>
<td>0.003</td>
</tr>
<tr>
<td>Ln-resistin, ng/ml</td>
<td>1.38 (0.42)</td>
<td>1.86 (0.57)</td>
<td>1.59 (0.35)(^{b})</td>
<td>1.76 (0.51)(^{b})</td>
<td>1.93 (0.40)(^{b,c})</td>
<td>1.98 (0.48)(^{b,c})</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Discussion

In the current study, we demonstrated significantly higher Ln-resistin and hsCRP levels in patients with PAD compared with healthy controls. In addition, among the 4 PAD subgroups, the value of Ln-resistin in the Stage I subgroup was the lowest, and the Stage II subgroup had lower Ln-resistin than the Stage III or IV subgroups, which suggested that Ln-resistin levels increased together with the severity of PAD. Finally, a multivariate analysis showed that the Ln-resistin level was an independent risk factor for PAD. To our knowledge, this is the first report showing the relationship between resistin and PAD severity.

Recent clinical research and in vitro experiments have supported the concept that resistin is an inflammatory mediator and a potential biomarker in cardiovascular diseases, especially in CAD and heart failure. On the one hand, human clinical studies displayed an association between CAD or its equivalents and either increased circulating resistin levels or local resistin expression. On the other hand, in vitro studies displayed the proatherogenic effects of resistin on endothelial cells, smooth muscle cells, and monocytes or macrophages. Furthermore, animal studies have proved the existence of a causal relationship between resistin and atherosclerosis progression. However, there was little data on the relationship between resistin and PAD, which has many features characteristic of a pathobiological process akin to CAD, including chronic inflammation, endothelial dysfunction, lipoprotein deposition, smooth cell dysfunction, and altered fibrin clot formation/degradation. Which is why we designed this study to investigate the relationship between resistin and the extent of PAD. However, our study was a clinical observation and did not explore the mechanisms by which resistin levels were increased in PAD patients. Nevertheless, future studies should explore the mechanisms by which resistin levels are increased in PAD patients and test the potential therapeutic effects of resistin inhibitors.
PAD is a distinct atherosclerotic syndrome marked by stenosis or occlusion of the arteries, particularly of the lower extremities. Insulin resistance and chronic inflammation have both been implicated in the development of PAD. The first study illustrating the association of PAD and insulin resistance was a cross-sectional study published in 2008 using the National Health and Nutrition Examination Survey, which reported that insulin resistance was strongly and independently associated with PAD and the presence of insulin resistance attenuated the association of inflammation with PAD. In that study, PAD was diagnosed if either leg had an ABI of ≤0.90. Recently, a study of elderly adults within the Cardiovascular Health Study demonstrated similar findings: insulin resistance was associated with the development of PAD assessed both by the development of a low ABI and clinical PAD. Since resistin was first described in 2001, it was gradually concluded that resistin played an important role in insulin resistance and obesity in diabetic mouse models based on a number of experiments. Although human resistin is only 59% homologous to mouse resistin at the amino acid level, which highlights the limitations of using a mouse model to study human metabolism, a growing number of studies has shown a positive correlation between obesity, insulin resistance, and elevated serum resistin in humans. Sheng et al. found that resistin was expressed in human hepatocytes with induced insulin resistance. A study performed on 176 obese children and 88 healthy children in China showed that resistin not only played a direct role in metabolic syndrome, but also indirectly contributed to early atherosclerosis in obese children via insulin resistance and hsCRP. A high inflammatory burden has been observed in the development of PAD. In our study, we observed that the levels of hsCRP, which is a well-known and sensitive marker for prediction of the degree of systemic inflammation, were higher than those in healthy controls and were associated with the severity of PAD. As resistin is expressed by macrophages in response to inflammatory stimuli in humans, it has been the object of intense clinical research that has generally shown high levels of resistin in several atherosclerotic diseases. It was reported that plasma resistin and interleukin-6 concentrations increased significantly in patients with ischemic heart disease with and without diabetes, which indicated there was a possible role of resistin and interleukin-6 in inflammatory processes, especially in atherosclerosis. Based on their finding of increased resistin levels being related to inflammation and endothelial activation, Maggio et al. hypothesized that interventions aiming to diminish resistin expression might slow down atherogenesis in adolescents. In a recent review, Jamaluddin et al. summarized that resistin was involved in pathological processes leading to cardiovascular diseases including inflammation, our results are in line with the viewpoint that resistin plays an important regulatory role in atherosclerosis progression.
endothelial dysfunction, thrombosis, angiogenesis, and smooth muscle cell dysfunction.

We found a positive association between Ln-resistin and total cholesterol. An earlier study demonstrated that resistin directly affected the metabolism of fatty acids by increasing cholesterol esterification into lipids. Moreover, there were some reports showing that some drugs, such as statins and antidiabetic drugs, might alter the concentration of resistin, so we also applied adjustments for our PAD patients’ medications when we compared the levels of Ln-resistin. Additionally, in our multivariate analysis, we identified smoking, total cholesterol, and Ln-resistin as independent risk factors for PAD, which was partly consistent with earlier reports. A well-characterized and prospective study of 44,985 men in the United States with more than 2 decades of follow-up showed that smoking, hypertension, hypercholesterolemia, and type 2 diabetes accounted for the majority of risk associated with the development of clinically significant PAD. Our observations are promising and prompt further research into robust biomarkers to identify the underlying signaling pathways in PAD.

Our study has several limitations, one of which was the cross-sectional design. Although cross-sectional studies can measure associations, they are not able to prove causality. It would have been ideal to have obtained serial follow-ups and resistin levels in our study to prove causality. Second, our sample size was relatively small, and this study may not be representative of the general population or the community-based population. Third, we have to admit that our case-control study being not age- and sex-matched was faulty, and this lessened its reliability to a certain extent.

Conclusions Our study demonstrated that Ln-resistin values are increased in PAD patients. There was a significant difference among the different PAD-grade subgroups. Furthermore, in a multivariate analysis, the Ln-resistin level was an independent predictor of PAD. It would be necessary to carry out large and long-term prospective studies to confirm that serum resistin is a prognostic biomarker for the extent of PAD, as in other forms of clinically overt atherosclerosis.

REFERENCES

Związek między stężeniem rezystyny w surowicy a chorobą tętnic obwodowych

Huan Zheng¹, Huifeng Xu², Nanzi Xie¹, Junling Huang¹, Hong Fang², Ming Luo¹

¹ Department of Geriatrics, Tongji Hospital Affiliated to Tongji University, Szanghaj, Chiny
² Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Szanghaj, Chiny

STRESZCZENIE
Rezystyna jest mediatorem reakcji zapalnej i potencjalnym biomarkerem chorób sercowo-naczyniowych.

CELE
Celem pracy było ustalenie jej związku z chorobą tętnic obwodowych (peripheral arterial disease – PAD).

PACJENTI I METODY
W badaniu uczestniczyło 200 chorych z PAD i 100 zdrowych osób w grupie kontrolnej. Chorych podzieliło wg zaawansowania PAD na 4 podgrupy wyodrębnione zgodnie z klasyfikacją Fontaine’a (okresy I–IV). Porównywano stężenie rezystyny u chorych z PAD i w grupie kontrolnej oraz między 4 podgrupami PAD po wprowadzeniu poprawek na wybrane czynniki.

WYNIKI
Logarytm naturalny stężenia rezystyny (Ln-rezystyna) i stężenie białka C-reaktywnego oznamczoną metodą o dużej czułości (high-sensitivity C-reactive protein – hsCRP) były większe u chorych z PAD niż u zdrowych osób z grupy kontrolnej (p <0,05). W 4 podgrupach PAD wartość Ln-rezystyny była najmniejsza w podgrupie z etapem I, a ponadto mniejsza w podgrupie z etapem II niż w podgrupach z etapami III i IV (p <0,05). Stwierdzono również znamienne różnice stężeń hsCRP między tymi 4 podgrupami (p <0,05). U chorych z PAD wartość Ln-rezystyny wykazywała korelację ujemną ze wskaźnikiem kostkowo-ramiennym (r = −0,301, p <0,05) i korelację dodatnią ze stężeniem cholesterolu całkowitego (r = 0,228, p <0,01). Ponadto w dodatkowej analizie wieloczynnikowej wykazano, że wartość Ln-rezystyny jest niezależnym czynnikiem ryzyka PAD (OR = 1,237, 95% CI = 1,086–1,396, p <0,01).

WNIOSKI
Wartość Ln-rezystyny i stężenie hsCRP u chorych z PAD są zwiększane i zwiększają się wraz ze wzrostem zaawansowania PAD. Analiza wieloczynnikowa sugeruje, że Ln-rezystyna może być prognostycznym biomarkerem występowania PAD.