INTRODUCTION Mastocytosis is a group of disorders characterized by an abnormal proliferation and accumulation of atypical mast cells in various organs and tissues including the bone marrow, skin, liver, spleen, lymph nodes, and gastrointestinal tract. Symptoms of mastocytosis are caused by mast cell-derived mediators and, less frequently, by destructive infiltration of the mast cells in tissues. Patients with mastocytosis often suffer from symptoms caused by the activation and release of mediators from the mast cells, such as generalized itching, redness, headache, abdominal cramps, diarrhea, bone pain or arthritis, hypotension, and shock. Mast cell mediators released during activation include histamine, proteases (eg, tryptase, chymase, and carboxypeptidase), lipid-derived mediators (eg, cysteinyl leukotrienes, prostaglandin D2). The activation of the mast cells might result from an immune response (eg, allergy to food, insect venom, drugs, and release of mediators from the mast cells, such as generalized itching, redness, headache, abdominal cramps, diarrhea, bone pain or arthritis, hypotension, and shock. The activation of the mast cells might result from an immune response (eg, allergy to food, insect venom, drugs, and release of mediators from the mast cells, such as generalized itching, redness, headache, abdominal cramps, diarrhea, bone pain or arthritis, hypotension, and shock.

OBJECTIVES The aim of the study was to assess the prevalence of anaphylactic reactions and to identify the risk factors for anaphylaxis in patients with mastocytosis depending on the type of the disease. Furthermore, we analyzed a response to treatment of mediator-related symptoms in this patient group.

PATIENTS AND METHODS The study group included 152 adult patients with mastocytosis. The diagnostic workup included a histopathological examination, flow cytometry, KIT mutation analysis, and measurement of tryptase levels. The diagnosis of allergy was confirmed by the skin prick test and serum immunoglobulin E levels.

RESULTS The prevalence of anaphylactic reactions in the study group was 50% and was higher in patients with systemic mastocytosis (P = 0.007), specifically in its indolent variant (P = 0.026), than in patients with cutaneous mastocytosis. The most frequent triggers of anaphylaxis were food (29%), insect stings (22%), and drugs (15%). Tryptase levels were higher in patients with a history of anaphylaxis (P = 0.029) as well as in those with symptoms provoked by physical factors (P = 0.002). Such symptoms were reported in 112 patients (74%) and were more common in patients with systemic mastocytosis compared with those with cutaneous mastocytosis (P = 0.026). The treatment was ineffective in 8 patients (10.5%) and resulted only in partial remission in 14 patients (18.4%).

CONCLUSIONS The study showed a significant incidence of symptoms related to physical factors in patients with mastocytosis and anaphylaxis in history. Risk factors for anaphylaxis included increased serum tryptase levels and indolent variant of systemic mastocytosis. Standard pharmacological treatment was ineffective in 10% of the patients, who may require biological treatment.
latex) or nonallergic mechanisms of hypersensitivi-
ty after activation of nonspecific stimuli such as
heat, exercise, and stress. Some patients may be
diagnosed with idiopathic anaphylaxis or ex-
ercise-induced anaphylaxis. Thus, in this group of
patients, the presence of clonal proliferation
markers of the mast cells should be determined.4
It is believed that mast cells in mastocytosis pa-
tients may have an intrinsic defect lowering the
threshold for activation and/or increasing its sen-
sitivity to allergens.2

Anaphylactic reactions occur in 30% of all pa-
tients with mastocytosis and in 50% of patients
with systemic mastocytosis (SM).2,5,6 Although
the incidence of anaphylactic reactions (both im-
umunoglobulin E [IgE]-dependent and IgE-inde-
pendent) in patients with mastocytosis is signif-
ically higher than in the general population, the
frequency of atopy is similar in both populations.7

Insect stings are considered a major cause of mast
cell activation in patients with mastocytosis. It is
estimated that 30% of patients with mastocytosis
have anaphylactic reactions due to insect sting,5
which are more frequent and more severe than in
the general population with insect venom aller-
gies (IVA) (1%–3%).5 Non-IgE-mediated IVA are
rather rare8 although specific IgE and skin tests
are more often negative than in the general pop-
ulation with IVA. It was suggested that this phe-
nomenon results from the adsorption of circu-
lating IgE on the surface of numerous mast cells
clustered in the tissues.10

Furthermore, the more severe anaphylaxis may
result from the activation of a cascade of intra-
cellular tyrosine kinases: Kit, Lyn, Syk, and Fyn
in abnormal mast cells. However, the presence of
KIT gene mutations, notably D816V, detectable
in more than 90% of patients with SM resulting
in an increased activation of the mast cells, does
not correlate with the severity or the prevalence
of anaphylaxis.11 The simultaneous presence of al-
lergy and myeloproliferative disorders is ob-
served also in hypereosinophilic syndromes.12

There are scarce data on the frequency of ana-
phylactic reactions and their risk factors in pa-
tients with mastocytosis. The aim of this study
was to analyze the prevalence of mast cell activa-
tion symptoms ranging from mild symptoms to
anaphylaxis and to identify the risk factors in pa-
tients with mastocytosis in relation to the type of
the disease. Furthermore, we assessed a response
to the preventive treatment of mediator-related
symptoms in this patient group.

PATIENTS AND METHODS The study group in-
cluded 152 adult patients (106 women and 46
men aged from 18 to 78 years) treated by the Pol-
ish Center of Excellence of the European Com-
petence Network on Mastocytosis in the De-
partment of Allergology, Medical University of
Gdansk, Gdansk, Poland, between 2004 and 2011.
Mastocytosis was diagnosed in accordance with
the World Health Organization guidelines, in-
cluding a pathological examination of the bone
marrow biopsy, examination of the bone mar-
row aspirate: cytology, immunophenotyping of
mast cell expression of CD2 and CD25, activat-
ing point mutation of KIT, and serum tryptase
levels.1 In subjects without skin lesions who ex-
perienced anaphylactic reactions but who met
only 1 or 2 minor criteria for SM (excluding in-
creased serum tryptase levels at baseline), mono-
clonal mast cell activation syndrome (MCAS) was
diagnosed.12 The differentiation between the sub-
types of mastocytosis was performed according
to the presence of clinical symptoms caused by
tissue or organ infiltration of the mast cell. Cuta-
neous mastocytosis (CM) was recognized on the
basis of typical morphology of skin lesions, posi-
tive Darier sign, and histopathology of skin bi-
opsy after exclusion of SM. To evaluate the ex-
tent and intensity of cutaneous symptoms, the
SCORMA index was used in accordance with a
previously described method.13

Patients were asked by a study physician about
any anaphylactic symptoms in their medical his-
dory during a medical interview. According to the
European Academy of Allergy and Clinical Immu-
nology (EAACI) guidelines, the symptoms of
hypersensitivity were grouped into nonallergi-

c and allergic reactions.14 Anaphylaxis was de-

defined by a sudden onset of a generalized or sys-
temic reaction in accordance with EAACI defini-
tions.15 The severity of anaphylactic reaction was
assessed by the Ring and Messmer scale.16 Grade I
was defined as mild anaphylactic reaction with
cutaneous–mucous signs (pruritus, urticaria, an-
gioedema). Grade II was characterized by cutane-
ous–mucous signs, cardiovascular signs (tachycar-
dia, a decrease in blood pressure by >20 mmHg),
respiratory signs (rhinorrhea, hoarseness, dys-
pnea), alimentary tract signs (nausea, abdomi-
nal cramps, diarrhea). Grade III was characterized
by cardiovascular collapse, bronchospasm, swell-
ing of the glottis, and cyanosis (severe anaphyl-
actic reactions). Grade IV was characterized by

cardiac and respiratory arrest. The anaphylactic
reactions were divided into nonimmune and im-
mune reactions, which were subsequently divid-
ed into IgE-mediated or mediated by other immu-
nological reactions. The basis of clinical diagno-
sis in IgE-mediated allergy were well-known di-
agnostic skin prick tests and allergen–specific IgE
levels evaluated together with allergen exposure
data.16 Insect venom allergy was diagnosed in ac-
cordance with the EAACI guidelines and included
a specific IgE evaluation and both skin and intra-
cutaneous tests in all patients in accordance with
the symptoms of insect venom allergy in med-
ical history. Drug hypersensitivity (nonsteroidal
anti-inflammatory drugs [NSAIDs], antibiotics,
local anesthetics) was diagnosed in accordance
with the EAACI/European Network on Drug Al-
lergy guidelines and was confirmed by the skin
prick test or intracutaneous test (or both) fol-
lowed by a drug provocation test (DPT) in a se-
lected group of patients. Before the DPT, an indi-
vidual risk-to-benefit ratio was estimated. DPTs
The frequency of severe anaphylactic reactions was significantly higher in patients with SM (39.2%) than in those with CM (25%) (P = 0.028). There was also a difference in the number of anaphylactic reactions between patients with SM and those with CM (P = 0.026). The frequency of anaphylactic reactions was also significantly higher in patients with skin involvement (67 patients, 48%; P = 0.028). The characteristics of patients depending on the presence of anaphylaxis are shown in TABLE 2.

The most common triggers of mast cell-activation symptoms were food allergens (44 patients, 29%), insect stings (34 patients, 22%), and drugs (22 patients, 14%). The most common risk factors for severe anaphylactic reactions (grades II and III) were physical factors (112 patients, 74%), followed by food allergens (44 patients, 29%), insect stings (34 patients, 22%), and drugs (22 patients, 14%).

The study group included 152 prospectively recruited patients with all types of mastocytosis as shown in TABLE 1.

SM was diagnosed in 82 patients (54%): indolent systemic mastocytosis (ISM) in 76 (50%), smouldering systemic mastocytosis (SSM), and aggressive systemic mastocytosis (ASM) in 6 (4%). CM was diagnosed in 66 patients (43%) and MCAS, in 4 (3%). There were no grade IV anaphylactic reactions according to the Ring scale in the study group, whereas 19 patients (12.5%) had grade I reaction; 18 (11.8%), grade II; and 39 (25.7%), grade III reaction. The prevalence of anaphylactic reactions in the whole study group was 50%, and in the SM group, 73%. There were no anaphylactic reactions in patients with ASM.

The frequency of reactions was significantly higher in the group of patients with SM (46 patients, 60.5%) compared with those with CM (25 patients, 37.8%) (P = 0.007). There was also a difference in the number of anaphylactic reactions between patients with ISM and those with CM (P = 0.026). The frequency of anaphylactic reactions was also significantly higher in patients with skin involvement (67 patients, 48%; P = 0.028). The characteristics of patients depending on the presence of anaphylaxis are shown in TABLE 2.

The most common triggers of mast cell-activation symptoms were physical factors (112 patients, 74%), food allergens (44 patients, 29%), insect stings (34 patients, 22%), and drugs (22 patients, 15%).

The most common risk factors for severe anaphylactic reactions (grades II and III) were Hydropsyche stings (34 patients, 22%), followed by food (26 patients, 17%) and drug intake (17 patients, 11%). The most common triggers of mild

TABLE 1
Clinical characteristics of patients with mastocytosis

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All</th>
<th>CM</th>
<th>ISM</th>
<th>SSM</th>
<th>ASM</th>
<th>MAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>male sex</td>
<td>46</td>
<td>23</td>
<td>21</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>female sex</td>
<td>106</td>
<td>43</td>
<td>55</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>age, y</td>
<td>41</td>
<td>37</td>
<td>43</td>
<td>51</td>
<td>59</td>
<td>51</td>
</tr>
<tr>
<td>skin involvement</td>
<td>141</td>
<td>66</td>
<td>70</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>tryptase levels (mean, range)</td>
<td>40.8 (1.7–296)</td>
<td>13 (1.7–102)</td>
<td>57.4 (6.6–194)</td>
<td>178 (101–296)</td>
<td>104.7 (101–112)</td>
<td>27 (18.9–33.8)</td>
</tr>
<tr>
<td>KIT mutation</td>
<td>56</td>
<td>32</td>
<td>81</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>triggering factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>physical factors</td>
<td>112</td>
<td>43</td>
<td>62</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>food allergens</td>
<td>44</td>
<td>15</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>insect stings</td>
<td>34</td>
<td>13</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>drugs</td>
<td>28</td>
<td>10</td>
<td>14</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>severity of reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grade I</td>
<td>19</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>grade II</td>
<td>18</td>
<td>5</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>grade III</td>
<td>39</td>
<td>11</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>tryptase levels (mean, range)</td>
<td>40.8 (1.7–296)</td>
<td>13 (1.7–102)</td>
<td>57.4 (6.6–194)</td>
<td>178 (101–296)</td>
<td>104.7 (101–112)</td>
<td>27 (18.9–33.8)</td>
</tr>
</tbody>
</table>

Data are presented as number (percentage) of patients, percentage of patients, or mean (interquartile range).

Abbreviations: ASM, aggressive systemic mastocytosis; CM, cutaneous mastocytosis; ISM, indolent systemic mastocytosis; MAS, mast cell-activation symptoms; SSM, smouldering systemic mastocytosis.

TABLE 2
Characteristics of patients depending on the presence of anaphylaxis

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Patients</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>with anaphylaxis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>men</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>women</td>
<td>54</td>
<td>52</td>
</tr>
<tr>
<td>age, y</td>
<td>41.4 (18–73)</td>
<td>40.5 (18–78)</td>
</tr>
<tr>
<td>type of mastocytosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>25 (38)</td>
<td>41 (62)</td>
</tr>
<tr>
<td>ISM</td>
<td>46 (61)</td>
<td>30 (39)</td>
</tr>
<tr>
<td>MAS</td>
<td>4 (100)</td>
<td>0</td>
</tr>
<tr>
<td>ASM</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>skin involvement</td>
<td>67 (48)</td>
<td>74 (52)</td>
</tr>
<tr>
<td>tryptase levels (mean, range)</td>
<td>43.6 (1.7–192)</td>
<td>38 (2–296)</td>
</tr>
</tbody>
</table>

Data are presented as number (percentage) of patients, percentage of patients, or mean (interquartile range).

a incidence of anaphylaxis in patients with ISM compared with patients with CM
b patients with CM, ISM, and MAS

Abbreviations: NS, nonsignificant; others, see TABLE 1.
anaphylactic reactions (grade I) were food (18 patients, 12%) and drugs (5 patients, 3%).

Mechanism of the reaction Hypersensitivity reactions were observed in 127 patients (84%), and allergic hypersensitivity reactions, in 62 cases (41%). The overlap of allergic and nonallergic reactions was found in 49 patients (32%); other factors related to nonallergic hypersensitivity such as food or drug intolerance and physical factors were found in 29 cases (19%). However, the physical factors were the only trigger of symptoms in 36 cases (24%) (FIGURE 1).

The most common causative factors for mast cell-activation symptoms were physical factors reported in 112 patients (74%), while in all 34 patients with clinical symptoms of IVA, the diagnosis of allergy was confirmed. The incidence of reactions to physical factors was higher in patients with anaphylactic reactions in history (66 patients [86%]) in comparison with patients without anaphylaxis (10 patients, 13%) ($P = 0.0002$).

Symptoms of food intolerance were reported in 44 patients (29%), including food allergy diagnosed in 14 patients (9%). However, in the majority of patients (39, 26%) nonimmune hypersensitivity was diagnosed. Most potent food allergens, such as alcoholic beverages (red wine, beer, whisky, brandy), fish, chocolate, fruits (strawberries, citrus fruits), and raw vegetables (carrots, celery, parsley) were negative in both skin prick tests and specific IgE (sIgE) measurement. Thus, we assumed that the reaction was caused by food products rich in histamine rather than allergens. Food allergy was confirmed by the skin prick test and/or sIgE positive results for hazelnut ($n = 4$), meat ($n = 1$), spices ($n = 4$), tomato ($n = 5$), milk ($n = 2$), egg ($n = 2$), and mixed food allergens (assessed by sIgE) ($n = 12$).

Drug hypersensitivity was diagnosed in 28 patients (18.4%). Drugs causing allergic reactions included NSAIDs ($n = 17$), antibiotics ($n = 9$), local anesthetics ($n = 5$), low-molecular-weight heparin ($n = 2$), and contrast media ($n = 1$).

No differences were found between the type of mastocytosis and the incidence of IgE-mediated anaphylaxis, ie, IVA, food allergy symptoms, food intolerance, and confirmed food allergy.

Identification of risk factors for anaphylaxis Owing to the lack of mast cell-activation symptoms in patients with ASM, the further analysis included 142 patients with ISM and CM only (76 and 66, respectively).

The mean baseline serum tryptase level was higher in patients with anaphylaxis (43.76 ng/ml) compared with patients without anaphylactic reactions (30.02 ng/ml) ($P = 0.029$). However, the risk of mast cell-activation symptoms and increased tryptase levels was observed only among patients with a tryptase level lower than 100 ng/ml ($P = 0.001$). There was only 1 case of anaphylaxis due to insect venom in the group of patients with the tryptase level higher than 100 ng/ml. Anaphylactic reactions were also less prevalent among subjects with a higher tryptase level and more aggressive variants of the disease (FIGURE 2).

The higher incidence of anaphylactic reactions was observed in patients with SM ($n = 46$) compared with patients with CM (46 patients vs 25 patients; $P = 0.007$). Patients with SM also had higher serum tryptase levels at baseline ($P = 0.0001$). In addition, tryptase levels were significantly higher in patients with mast cell-activation symptoms...
insect venom allergy. The remaining 8 patients (24%) are due to start venom immunotherapy in the near future. The treatment was performed according to an ultrarush (wasp) or rush (bee) protocol with a maintenance dose of 100 µg. According to the guidelines, this should be a lifelong therapy in patients with mastocytosis. To avoid side effects, a pretreatment with antihistamines at high doses (ie, 40 mg of cetirizine per day) was administered. Side effects were reported only in 1 patient, in whom the build-up phase of honeybee venom immunotherapy was complicated by a grade III reaction on the Ring scale (anaphylactic shock). The maintenance treatment was not complicated by any systemic side effects, which confirms that venom immunotherapy may be safely administered in patients with mastocytosis.

One patient, who had finished treatment in 2000, was stung 5 years after the completion of therapy and suffered from anaphylactic shock. Once mastocytosis was diagnosed, venom immunotherapy was restarted. The overall response to treatment, which consisted of antihistamines, corticosteroids, cromons and/or venom immunotherapy, in all mastocytosis patients with anaphylaxis in history is presented in TABLE 3. Patients were treated for at least 1 year before the assessment. Our study showed no remission in 8 patients (10.5%), which indicates that they might be candidates for biological treatment (ie, omalizumab, KIT inhibitor). In 14 patients (18%), only partial remission was achieved. In 3 patients, responsiveness to treatment was not evaluated because the therapy had just been started.

DISCUSSION Our study showed that half of the patients with mastocytosis had anaphylactic symptoms provoked by physical factors compared with patients without such symptoms ($P = 0.002$).

Furthermore, the incidence of hypotension was observed more often in patients with SM than in those with CM ($P = 0.03$). The increased frequency of symptoms of mast cell activation depending on physical factors was also higher in SM patients compared with those with CM ($P = 0.026$).

The risk of reaction related to physical triggers was increased in patients with ISM (odds ratio, 2.15; confidence interval, 1.02–4.52). Serum tryptase levels at baseline were higher in patients with mast cell activation caused by physical factors compared with patients without such symptoms ($P = 0.014$). There was no difference in the prevalence of KIT mutations among patients with mast cell activation. We hypothesized that there might be a relation between the incidence of mast cell activation triggered by physical factors and skin involvement including the Darier sign as a marker of mast cell degranulation. However, we did not observe any significant differences.

Prevention of mast cell-mediated symptoms The prevention of anaphylaxis was administered according to the EAACI and Europan Competence Network on Mastocytosis standards.1 All patients with mastocytosis were treated with antihistamines (H_1- and H_2-blockers). A few patients received also other drugs including corticosteroids (n = 3) and cromons (n = 2). All patients were equipped with an emergency kit. Treatment with epinephrine was prescribed for every patient with anaphylaxis in history and with SM, and patients were trained in proper techniques of self-administration. Venom immunotherapy was started in 26 patients (76.5%) with confirmed allergy to insect venom (n = 34). The remaining 8 patients (24%) are due to start venom immunotherapy in the near future. The treatment was performed according to an ultrarush (wasp) or rush (bee) protocol with a maintenance dose of 100 µg. According to the guidelines, this should be a lifelong therapy in patients with mastocytosis. To avoid side effects, a pretreatment with antihistamines at high doses (ie, 40 mg of cetirizine per day) was administered. Side effects were reported only in 1 patient, in whom the build-up phase of honeybee venom immunotherapy was complicated by a grade III reaction on the Ring scale (anaphylactic shock). The maintenance treatment was not complicated by any systemic side effects, which confirms that venom immunotherapy may be safely administered in patients with mastocytosis.19,20 One patient, who had finished treatment in 2000, was stung 5 years after the completion of therapy and suffered from anaphylactic shock. Once mastocytosis was diagnosed, venom immunotherapy was restarted. The overall response to treatment, which consisted of antihistamines, corticosteroids, cromons and/or venom immunotherapy, in all mastocytosis patients with anaphylaxis in history is presented in TABLE 3. Patients were treated for at least 1 year before the assessment. Our study showed no remission in 8 patients (10.5%), which indicates that they might be candidates for biological treatment (ie, omalizumab, KIT inhibitor). In 14 patients (18%), only partial remission was achieved. In 3 patients, responsiveness to treatment was not evaluated because the therapy had just been started.
TABLE 3 Response to prophylactic treatment with venon immunotherapy, antihistamines, cromons, and/or steroids

<table>
<thead>
<tr>
<th>Type of response</th>
<th>No. of patients</th>
<th>% of anaphylactic patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>complete remission</td>
<td>7</td>
<td>9.2</td>
</tr>
<tr>
<td>significant regression</td>
<td>44</td>
<td>57.8</td>
</tr>
<tr>
<td>partial regression</td>
<td>14</td>
<td>18.4</td>
</tr>
<tr>
<td>no regression</td>
<td>8</td>
<td>10.5</td>
</tr>
</tbody>
</table>

reactions in their medical history. The percentage of reactions was even higher in patients with SM (76%). The risk factors for anaphylaxis were systemic disease and higher tryptase levels. The most common triggers of anaphylactic reactions were Hymenoptera stings, food, and medications, similarly to data from previous reports. What is novel in our study is that we identified the underestimated triggers of mediator-related symptoms, namely, physical factors. Symptoms of mast cell–activation provoked by physical factors were reported in 74% of the patients (n = 112). The prevention of anaphylactic reactions using the EAACI and ECNM guidelines was effective in the majority of patients (89.5%), indicating that biological treatment (currently in clinical studies) may be required in more than 10% of mastocytosis patients with anaphylaxis.

Our results showed that anaphylaxis is more common in patients with mastocytosis (50%) than in the general population where the prevalence ranges from 0.05% to 2%. It is assumed that anaphylaxis is more severe in mastocytosis patients. The frequency of all anaphylactic reactions was higher in patients with SM compared with those with CM, as reported previously by Brockow et al. The triggers for severe anaphylaxis were Hymenoptera stings, followed by food and drug intake, which did not differ from triggers of anaphylactic reactions in the general population of that age. Mild anaphylactic reactions were caused by food and drugs. However, no differences were found in the prevalence of IgE–mediated anaphylaxis in mastocytosis patients in comparison with the general population except for insect venom allergy. Most of the symptoms caused by food did not result from the IgE–dependent reaction. In a review by Vlieg-Boerstra et al., it was assumed that food containing a high level of biogenic amines and histamine-releasing components may cause the release of mast cell mediators. Symptoms resulting from mediator release may be related to high mast cell load rather than to increased susceptibility to degranulation. Anaphylaxis caused by drug intake resulted mostly from hypersensitivity to NSAIDs and allergy to antibiotics and local anesthetics. Our results confirmed the data published by Moner et-Vautrin et al. that life-threatening anaphylaxis due to medications was triggered mostly by amoxicillin, cephalosporins, and NSAIDs.

Tryptase is a reliable marker of mast cell degranulation and can serve as a surrogate marker of anaphylaxis. Increased tryptase levels (lower than 100 ng/ml) were significantly associated with anaphylaxis in our study and may be considered a risk factor for severe allergic reactions. These data confirmed the previous reports on Hymenoptera venom anaphylaxis and increased tryptase levels. The anaphylactic reactions were less prevalent among subjects with a tryptase level exceeding 100 ng/ml and more aggressive forms of the disease. More aggressive forms of the disease are associated with more abnormal and disturbed function of mast cells. In the group of patients with more aggressive forms of mastocytosis, such as SSM or ASM, anaphylactic reactions were suppressed, which is in line with a study by van Anrooij et al. Patients might be at an increased risk of a number of fatal anaphylactic reactions induced by exercise, exposure to extremes of temperature or humidity, high pollen counts, fever, or acute infection. Brockow et al. reported that, in some cases of anaphylaxis, elicitors remained unknown. In mastocytosis patients, clinical symptoms may result from a massive release of mast cell–derived vasoactive mediators. In our study, we identified a trigger of allergic reactions in the majority of patients. Additionally, in most patients (74%), we found symptoms of mast cell degranulation, such as flushing, pruritus, headache, abdominal cramps, and hypotension provoked by physical factors such as exercise, rubbing of the skin, heat, cold, and sunlight. In SM, we observed hypotension more often than in CM. Interestingly, in patients with SM, we also found a higher incidence of symptoms of mast cell activation depending on physical factors. In addition, baseline serum tryptase levels were higher in patients with mast cell activation related to physical factors compared with patients without those symptoms. It is assumed that patients with SM or with increased tryptase levels are at a higher risk of anaphylactic reaction. In this study, we also reported a higher incidence of anaphylactic symptoms resulting from mast cell activation depending on physical factors in mastocytosis patients with anaphylaxis in history. In these patients, serum tryptase levels at baseline were higher and the KIT mutation was more common, which is in line with the available data. We assume that mast cell–activation symptoms related to physical factors could be a risk factor for anaphylaxis in mastocytosis patients, and these symptoms should be recorded in medical history in every patient with mastocytosis.

There is currently no effective causative therapy for mastocytosis. It generally involves avoidance of trigger factors, targeting symptoms of mast cell–mediator release and allergen-specific immunotherapy for patients with confirmed allergy. In a study by Brockow et al., the therapy of mastocytosis patients involved the use of antihistamines or corticosteroids (or both) but epinephrine was prescribed only to 11% of adult patients. In other studies, similar results were reported with epinephrine administration from 10% to 16% in patients with an anaphylactic reaction in history.
We suggest that all patients with mastocytosis equip their safety kits with epinephrine until validated tools for predicting the risk of anaphylaxis are introduced into clinical practice.

We assessed the efficacy of the prophylactic treatment of mediator-related symptoms, which was ineffective in 8 patients (10.5%) and resulted only in partial remission in 14 patients (18%). This suggests that, at least in the first group, biological therapy (i.e., with omalizumab and KIT inhibitor) focused on the mast cells might be considered in the future.

In conclusion, we confirmed a significantly higher incidence of anaphylactic reactions, especially in patients with SM. We also reported a significant incidence of symptoms resulting from mast cell activation related to physical factors in mastocytosis patients with anaphylaxis in history. Our results show that there is a linear correlation between tryptase levels lower than 100 ng/ml and anaphylaxis. Higher tryptase levels are a risk factor for more aggressive variants of mastocytosis and probably a lower risk of anaphylaxis.26

We believe that mast-cell-activation symptoms related to physical factors may be a risk factor for anaphylaxis and should be assessed in every patient with mastocytosis. Furthermore, it is possible that every tenth patient with mastocytosis may be resistant to the currently recommended treatment and might be a candidate for novel biological therapy, which so far has been available only in clinical trials.

Acknowledgments The study was supported by grant No. 2011/01/M/ZZ01362 of the Polish National Science Center (granted to MN).

REFERENCES

Czynniki ryzyka reakcji anafilaktycznych u chorych na mastocytozę

Aleksandra Górska1*, Marek Niedoszytko1*, Magdalena Lange2, Marta Chelmińska1, Bogusław Nedoszytko2, Bartosz Wasąg3, Jan Marek Słomiński4, Marta Gruchała-Niedoszytko5, Roman Nowicki2, Ewa Jassem1

1 Klinika Alergologii, Gdańsk Uniwersytet Medyczny, Gdańsk
2 Klinika Dermatologii, Wenerologii i Alergologii, Gdańsk Uniwersytet Medyczny, Gdańsk
3 Zakład Biologii i Genetyki, Gdańsk Uniwersytet Medyczny, Gdańsk
4 Klinika Pneumonologii, Gdańsk Uniwersytet Medyczny, Gdańsk
5 Zakład Żywienia Klinicznego i Dietetyki, Gdańsk Uniwersytet Medyczny, Gdańsk

SŁOWA KLUCZOWE
anafilakcja, czynniki ryzyka, efektywność leczenia, mastocytoza, mediatory

STRESZCZENIE

WPROWADZENIE Objawy wynikające z aktywacji i uwalniania mediatorów z mastocytów są obserwowane w około 30% chorych na mastocytozę.

CELE Celem badania była analiza częstości występowania reakcji anafilaktycznych oraz identyfikacja czynników ryzyka anafilakcji u chorych na mastocytozę w zależności od postaci choroby. Ponadto oceńono odpowiedź na leczenie objawów degranulacji mastocytów u tych chorych.

PACJENTI I METODY Grupa badana obejmowała 152 dorosłych chorych na mastocytozę. Rozpoznanie ustalano na podstawie badania histopatologicznego, cytometrii przepływowej, badania mutacji KIT oraz pomiaru stężenia tryptazy. Rozpoznanie alergii potwierdzono wynikiem punktowego testu skórnego oraz poziomem immunoglobulin E w surowicy.

WYNIKI Częstość reakcji anafilaktycznych w badanej grupie wynosiła 50% i była większa u chorych na postać układową mastocytozy (p = 0,007), zwłaszcza o powolnym przebiegu (p = 0,026), niż u chorych z postacią skórną. Najczęstszymi czynnikami wywołującymi anafilakcje były: pokarm (29%), użadlenie przez owady (22%) oraz leki (15%). Stężenia tryptazy były wyższe u chorych z reakcjami anafilaktycznymi w wywiadzie (p = 0,029), a także w przypadku występowania objawów spowodowanych czynnikami fizykalnymi (p = 0,002). Objawy te stwierdzono u 112 chorych (74%) i występowały one częściej u osób z postacią układową choroby w porównaniu z chorymi z postacią skórną (p = 0,026). Leczenie było nieskuteczne u 8 chorych (10,5%) i dało jedynie częściową odpowiedź na leczenie u kolejnych 14 chorych (18,4%).

WNIOSKI W badaniu stwierdzono znaczne występowanie objawów wywołanych czynnikami fizykalnymi u chorych na mastocytozę z reakcjami anafilaktycznymi w wywiadzie. Czynnikami ryzyka reakcji było stężenie tryptazy w surowicy oraz postać układowa choroby o powolnym przebiegu. Standardowa farmakoterapia była nieskuteczna u 10% chorych, którzy prawdopodobnie wymagają leczenia biologicznego.