Plasma visfatin/nicotinamide phosphoribosyltransferase (visfatin/NAMPT) concentration in elderly subjects with metabolic syndrome

Piotr Kocelak¹, Magdalena Olszanecka-Glinianowicz¹, Aleksander J. Owczarek², Wojciech Krupa³, Patrycja Obirek³, Maria Bożentowicz-Wikarek³, Aniceta Brzozowska¹, Małgorzata Mossakowska⁴, Tomasz Zdrojewski⁵, Anna Skalska⁶, Andrzej Wiecek⁷, Jerzy Chudek³

1 Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
2 Department of Statistics, Department of Instrumental Analysis, Faculty of Pharmacy and Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
3 Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
4 International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
5 Department of Arterial Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
6 Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Kraków, Poland
7 Department of Nephrology, Transplantation and Internal Medicine, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland

KEY WORDS
insulin resistance, metabolic syndrome, microinflammation, visfatin/NAMPT

ABSTRACT

INTRODUCTION Visceral adipose tissue is the main source of circulating proinflammatory adipokine, visfatin/nicotinamide phosphoribosyltransferase (visfatin/NAMPT), whose role in the pathogenesis of metabolic syndrome (MS) components such as hypertension and carbohydrate and lipid disturbances is still uncertain, due to commonly used low specific C-terminal immunoassays to determine visfatin/NAMPT levels.

OBJECTIVES The aim of the study was to assess the association between the occurrence of MS components and circulating visfatin/NAMPT levels in elderly population.

PATIENTS AND METHODS The analysis included 2174 elderly participants of the PolSenior study without heart failure, severe chronic kidney disease, cancer, and malnutrition. MS was defined according to the modified International Diabetes Federation criteria. Plasma visfatin/NAMPT concentrations were measured by a highly specific enzyme-linked immunoassay. Additionally, high-sensitivity C-reactive protein (hsCRP), interleukin 6 (IL-6), and insulin levels were assessed, and the homeostasis model assessment for insulin resistance was calculated.

RESULTS Women were diagnosed with MS more often than men (71.2% vs 56.8%; \(P < 0.001 \)) and had a greater prevalence of all MS components except for type 2 diabetes. Women with MS had higher concentrations of hsCRP and IL-6 than those without MS. Visfatin/NAMPT concentrations were higher in women with MS than in those without MS (1.06 ng/ml [0.65–1.87] vs 0.85 ng/ml [0.54–1.40]; \(P < 0.001 \)), but no differences were observed in men (0.97 ng/ml [0.59–1.61] vs 0.90 ng/ml [0.56–1.60], respectively; \(P = 0.5 \)). In women, there was a stronger association between the number of components of MS and increased plasma visfatin/NAMPT levels than in men.

CONCLUSIONS Plasma visfatin/NAMPT levels are increased only in elderly women with MS. It is difficult to distinguish the components of MS specifically associated with increased visfatin/NAMPT levels.
INTRODUCTION Metabolic syndrome (MS) is a constellation of cardiovascular risk factors including visceral obesity, dyslipidemia, disturbances of carbohydrate metabolism, and hypertension. The cardiovascular risk is proportional to the number of MS components. Insulin resistance (IR), the consequence of visceral obesity, is the key pathomechanism in the development of the remaining MS components.

IR develops as a result of enlarged volume of adipocytes and local inflammation in visceral adipose tissue, related to disturbances in adipokine release and insufficiency in adipocyte energy storage, leading to ectopic lipid accumulation in the liver and skeletal muscles. It should be noted that IR may develop in patients with normal weight (according to body mass index [BMI]) with excessive visceral fat depot known as metabolic obese normal weight. The approved indirect method of visceral fat depot estimation is waist circumference measurement, an assessment of visceral obesity—one of the components of MS according to the International Diabetes Federation (IDF) diagnostic criteria.

As mentioned above, one of the factors participating in IR development is hormonal dysfunction of adipose tissue. Visfatin/nicotinamide phosphoribosyltransferase (visfatin/NAMPT) has been described as an adipokine highly expressed in visceral fat tissue, released by adipocytes and macrophages, with no extracellular receptor established and uncertain extracellular action. It is also known as dimeric NAMPT, the key enzyme involved in the NAD⁺ biosynthetic pathway and as a cytokine pre-B cell colony-enhancing factor (PBEF). Therefore, it is frequently named visfatin/NAMPT or visfatin/NAMPT/PBEF. The initially postulated insulin-mimetic action of visfatin/NAMPT has not been confirmed, and it is now believed that this adipokine has only proinflammatory properties.

Increased visfatin/NAMPT levels have been reported in subjects with IR by a number of studies, but have not been confirmed by other investigators. Increased circulating visfatin/NAMPT levels have also been reported in subjects diagnosed with obesity and those with MS criteria. However, the association between visfatin/NAMPT levels and severity of MS understood as a number of its components has not been assessed so far. In addition, during the analysis of the published studies assessing visfatin/NAMPT levels, we noticed that most of them, including some of our own, estimated visfatin/NAMPT levels with the use of low specific C-terminal enzyme immunoassays (EIA developed by Phoenix Pharmaceuticals, Burlingame, California, United States) or radioimmunoassays, which reported the circulating levels of undefined protein with a molecular weight of ~500 kDa improperly considered as visfatin/NAMPT. Therefore, there are no studies that would accurately assess visfatin/NAMPT levels in subjects with MS. Thus, the use of more specific enzyme-linked immunosorbent assay (ELISA) kits in plasma samples of a large group of elderly subjects, participants of the PolSenior study, may provide new data on the role of visfatin/NAMPT in MS. In our recently published study, we have shown that plasma visfatin/NAMPT levels are associated with age, systemic microinflammation, and IR regardless of sex, and with nutritional status only in women.

The aim of the present study was to assess the association between the number and type of MS components and circulating plasma visfatin/NAMPT levels in elderly population.

PATIENTS AND METHODS Study design and setting This substudy was based on 2733 banked samples from the PolSenior study stored at −70°C. The PolSenior study conducted in the years 2008 and 2011 recruited 6 age cohorts of a similar size (65–69 years, 70–74 years, 75–79 years, 80–84 years, 85–89 years, and ≥90 years). Trained nurses visited a total of 4979 participants 3 times to conduct a questionnaire survey, comprehensive geriatric assessment, and body mass, height, waist circumference, and blood pressure (BP) measurements. In addition, blood samples were withdrawn in the morning after an overnight fast and urine samples were collected. The study was approved by the Bioethics Committee of the Medical University of Silesia (KNW/0022/KBI/38/II/08/10; KNW-6501-38/1/08) and each subject gave written consent to participate.

Anthropometric measurements The height and body mass were measured in the morning after an overnight fast in subjects without shoes and dressed in light clothes (Tanita scale BC-536, Tokyo, Japan) with the accuracy of 0.5 cm and 0.1 kg.

The waist circumference was measured midway between the last rib and the iliac crest in a standing position in the anterior axillary line leading centimeter dipstick by the umbilicus with the accuracy of 0.5 cm.

BP measurements were performed 3 times in a sitting position after 5 minutes of rest on the left arm, using a fully automatic oscillometric BP measuring device (A&D UA 767, San Jose, California, United States) with a cuff selected according to the arm circumference. Thirty minutes before BP readings were taken, the patient could not smoke cigarettes, drink coffee, or do physical exercise. The nurse recorded the BP values with the accuracy of 1 mmHg. The mean value was calculated from the 2 first BP measurements.

The BMI was calculated according to the standard formula.

Biochemical measurements Blood samples were collected in the morning (8 AM to 9 AM) after a 12-hour overnight fast. Serum levels of glucose, total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein cholesterol, and triglycerides were assessed by an automated system (Modular PFE, Roche Diagnostics GmbH, Mannheim, Germany) in a single certified
Plasma visfatin/NAMPT levels were measured by ELISA (BioVendor, Brno, The Czech Republic), with the lower limit of sensitivity of 0.03 ng/ml and mean intraassay and interassay coefficients of variance of less than 9.1% and 5.6%, respectively. Our results showed lower concentrations of visfatin/NAMPT in the study populations, whereas previous assays demonstrated higher concentrations of visfatin/NAMPT. The used assay was highly specific for visfatin/NAMPT and did not crossreact with human resistin, adiponectin, vispin, RBP4, GPX3, progranulin, clusterin, ANGPTL3, ANGPTL4, or ANGPTL6. Moreover, dilution of human serum samples of visfatin/NAMPT showed an expected decrease of visfatin/NAMPT concentrations in subsequent samples showing a recovery range of 85% to 105%. Additionally, in a subset of randomly selected subjects (n = 244), plasma visfatin/NAMPT levels were measured by EIA (Phexin Pharmaceuticals, Burlingame, California, United States) with the lower limit of sensitivity of 2.63 ng/ml and intra- and interassay coefficients of variations of 5.2% and 5.8%, respectively.

Data analysis The components of MS were diagnosed according to the modified IDF criteria. The presence of any 3 components in an individual was considered as meeting the criteria of MS: 1) visceral obesity for Europeans (waist circumference of ≥294 cm in men and ≥80 cm in women); 2) serum triglyceride levels of ≥1.7 mmol/l or treatment of hypertriglyceridemia; 3) serum HDL cholesterol concentration: <1.03 mmol/l in men and <1.29 mmol/l in women or treatment of hypertriglyceridemia; 4) systolic BP of ≥130 mmHg and/or diastolic BP of ≥85 mmHg or treatment of hypertension; 5) fasting plasma glucose of ≥5.6 mmol/l or treatment of hypertriglyceridemia. MS was diagnosed according to the modified IDF criteria. The prevalence of MS had a greater prevalence of obesity (53.1% vs 34.7% and 34.1%, respectively). The presence of any 3 components in an individual was considered as meeting the criteria of MS: 1) visceral obesity for Europeans (waist circumference of ≥294 cm in men and ≥80 cm in women); 2) serum triglyceride levels of ≥1.7 mmol/l or treatment of hypertriglyceridemia; 3) serum HDL cholesterol concentration: <1.03 mmol/l in men and <1.29 mmol/l in women or treatment of hypertriglyceridemia; 4) systolic BP of ≥130 mmHg and/or diastolic BP of ≥85 mmHg or previously diagnosed hypertension; 5) fasting plasma glucose of ≥5.6 mmol/l or previously diagnosed type 2 diabetes.

IR was assessed on the basis of homeostatic model assessment of insulin resistance (HOMA-IR) calculated using the standard formula: HOMA-IR = fasting serum insulin (μIU/ml) \times fasting glucose (mmol/l)/22.5. IR was diagnosed if HOMA-IR was 2.5 or higher.

Statistical analysis A statistical analysis was performed using STATISTICA 10.0 PL (StatSoft, Kraków, Poland), StataSE 13.0 (StataCorp LP, Texas, United States), and the R software. Statistical significance was set at a P value of less than 0.05. All tests were 2-tailed. Imputations were not done for missing data. Nominal and ordinal data were expressed as percentages, while interval data were expressed as mean value ± standard deviation in the case of normal distribution or as median with lower and upper quartiles in the case of data with skewed or nonnormal distribution. Distribution of variables was evaluated by the Shapiro–Wilk test and homogeneity of variances was assessed by the Levene test. For comparison between the groups with and without MS, the t test was used in the case of data with normal distribution or after normalization with logarithmic function and the Mann–Whitney test in other cases. For comparison of data in relation to the number of MS components and its combinations, the 1-way analysis of variances was used with the Tukey or Dunnet post-hoc tests. Categorical variables were compared using either the χ² test or the Asymptotic Linear-by-Linear Association Test.

The Deming regression was used to assess the relationship between visfatin/NAMPT measurements with EIA and ELISA, with the BACON algorithm to check the occurrence of outliers. To assess the relationship between plasma visfatin/NAMPT levels and other variables, the stepwise backward multivariable linear regression analysis was used. The Cook–Weisberg and Cameron and Trivedi’s decomposition tests were used to test the residuals for heteroskedasticity as well as the violation of skewness and kurtosis assumptions in linear regression. Multicollinearity was evaluated by calculating the variance inflation factor, which should not exceed 5. As a measure of the effect size for regression analysis, we used η², which is the proportion of the total variance attributed to an effect. Larger values of η² indicate greater influence on the dependent variable.

RESULTS Of 3050 elderly PolSenior study participants with available plasma samples for the visfatin/NAMPT measurement, we excluded 317 subjects (10.4%) with insufficient data as well as subjects diagnosed with cancer (n = 127 [22.7%]), heart failure (n = 133 [23.8%]), stages IV and V of chronic kidney disease with an estimated glomerular filtration rate of less than 30 ml/min/1.7m² (n = 63 [11.3%]) or an albumin-to-creatinine ratio exceeding 300 mg/g (n = 61 [10.9%]), underweight (BMI <18.5 m²/kg (n = 283; 50.6%). The final analysis included the data of 2174 subjects (45.6% of women). Characteristics of the subjects are presented in Tables 1 and 2.

Characteristics of the study group A total of 1378 subjects (63.4% of the study group) met the criteria of MS (Tables 1 and 2). The prevalence of MS was significantly higher among women (71.2%) than among men (56.8%), P < 0.001. Women with MS had a greater prevalence of obesity (53.1% vs 38.7%, P < 0.001) and visceral obesity (98.2% vs 95.7%, P < 0.01), hypertension (95.0% vs 92.0%, P < 0.05), hypertriglyceridemia (44.3% vs 39.3%, P < 0.001), and low HDL cholesterol levels (55.7 vs 41.2%, P < 0.001) compared with men. The frequency of type 2 diabetes was similar among men and women (34.7% and 34.1%, respectively).
Plasma visfatin/nicotinamide phosphoribosyltransferase (visfatin/NAMPT) levels...
Nampt levels among men, regardless of statin therapy. None of the study subjects received thiazolidinediones.

Finally, we performed the stepwise backward multivariate linear regression analysis of plasma visfatin/NAMPT concentrations, including the following potentially explanatory variables: age, sex, MS, statin treatment, HOMA-IR, and hsCRP, IL-6, and albumin values (Table 5). The analysis confirmed that the effect of inflammation on plasma visfatin/NAMPT concentrations is independent from age.

Comparison of visfatin/NAMPT measurements using enzyme-linked immunosorbent assay and enzyme immunoassay From 244 randomly selected plasma samples for the assessment of visfatin/NAMPT between subjects with and without MS were significant only in women (Figure 1), including the subgroup of women not treated with statins (1.03 [0.66–1.93] vs 0.84 [0.54–1.36] ng/dl; P < 0.001), but not those on statin therapy (1.08 [0.62–1.66] vs 1.00 [0.59–1.73] ng/dl; P = 0.96). Among women, the lowest visfatin/NAMPT concentration was observed in subjects with 1 MS component, and the concentration increased with the number of MS components, reaching the highest levels in subjects with 4 components (Table 3). The number of MS components was more strongly associated with increased plasma visfatin/NAMPT concentrations than the combination of MS components (Table 4).

There was no association between the number of MS components and plasma visfatin/
In our study, plasma visfatin/NAMPT concentrations were slightly but significantly higher in women with MS than those without MS (1.06 vs 0.85 ng/ml, respectively), and did not differ in the corresponding subgroups of men (0.97 vs 0.9 ng/ml, respectively). Moreover, in line with the previous study performed using EIA, plasma visfatin/NAMPT concentrations increased with the number of MS components.

As mentioned above, our study is the first to analyze plasma visfatin/NAMPT levels with highly specific ELISA method in subjects with MS. The comparison of EIA and ELISA methods performed
and hypertension and is associated with the increased circulating visfatin/NAMPT levels, the relationship between hypertension and visfatin/NAMPT levels could be expected. It cannot be excluded that it is related to the influence of obesity on the prevalence of hypertension, which decreases with age.

As plasma visfatin/NAMPT levels were not assessed by ELISA in young obese patients with hypertension, this hypothesis cannot be verified.

Finally, there are only few (mostly association) studies showing the correlation between lipid disturbances and circulating visfatin/NAMPT levels in subjects with MS. Probably, it is the effect of microinflammation and IR related to obesity. Our recent analysis with structural equation modeling supported a correlation between visfatin/NAMPT levels, nutritional status, and inflammation, but not lipid disturbances, in the PolSenior population. Of interest, statin therapy abolished the association between MS factors and plasma visfatin levels.

The role of visfatin/NAMPT in the pathogenesis of obesity-related cardiovascular complications of MS has not been fully elucidated so far. There is some evidence demonstrating an association between circulating visfatin/NAMPT levels and impaired flow-mediated dilation, suggesting
TABLE 4 Visfatin/NAMPT, high-sensitivity C-reactive protein, and interleukin 6 concentrations as well as insulin resistance (defined as HOMA-IR ≥2.5) in women and men with the most common (n > 30) combinations of metabolic syndrome components

<table>
<thead>
<tr>
<th>Visceral obesity</th>
<th>Carbohydrate metabolism disturbances</th>
<th>High triglycerides levels</th>
<th>Low HDL cholesterol levels</th>
<th>Hypertension</th>
<th>n</th>
<th>Visfatin/NAMPT, ng/ml</th>
<th>HsCRP, mg/l</th>
<th>Interleukin 6, pg/ml</th>
<th>HOMA-IR ≥2.5, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>0.78 (0.54–1.23)</td>
<td>1.5 (1.2–2.6)</td>
<td>1.7 (1.2–2.5)</td>
<td>16 (43.2)</td>
</tr>
<tr>
<td></td>
<td>1 0 0 0</td>
<td>1 155</td>
<td>0.95 (0.57–1.50)</td>
<td>2.2 (1.3–4.0)</td>
<td>1.9 (1.3–3.0)</td>
<td>65 (41.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 0 0 0</td>
<td>1 137</td>
<td>1.19 (0.62–1.87)</td>
<td>2.4 (1.2–4.6)</td>
<td>2.2 (1.4–3.4)</td>
<td>67 (48.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 0 1 0</td>
<td>1 36</td>
<td>1.02 (0.66–1.74)</td>
<td>3.3 (1.7–5.6)</td>
<td>2.0 (1.3–2.7)</td>
<td>18 (50.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1 0 0</td>
<td>1 95</td>
<td>1.02 (0.61–1.92)</td>
<td>3.3 (1.3–5.8)</td>
<td>2.2 (1.4–3.4)</td>
<td>75 (78.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 0 1 1</td>
<td>1 90</td>
<td>1.13 (0.80–1.82)</td>
<td>2.6 (1.3–4.6)</td>
<td>2.1 (1.4–3.3)</td>
<td>53 (58.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1 0 1</td>
<td>1 140</td>
<td>1.00 (0.70–1.69)</td>
<td>2.6 (1.2–5.0)</td>
<td>2.5 (1.6–3.8)</td>
<td>120 (85.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1 1 0</td>
<td>1 34</td>
<td>1.32 (0.72–1.98)</td>
<td>2.4 (1.4–5.2)</td>
<td>2.0 (1.3–2.8)</td>
<td>31 (91.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1 1 1</td>
<td>1 126</td>
<td>0.98 (0.56–1.88)</td>
<td>2.8 (1.3–4.7)</td>
<td>2.0 (1.6–3.1)</td>
<td>115 (91.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P<ANOVA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.05</td>
<td>0.08</td>
<td><0.01 (1-β = 0.93)</td>
<td></td>
</tr>
<tr>
<td>men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>0.88 (0.61–1.32)</td>
<td>1.5 (0.8–4.2)</td>
<td>2.0 (1.6–3.6)</td>
<td>2 (5.6)</td>
</tr>
<tr>
<td></td>
<td>0 0 0 0</td>
<td>0 85</td>
<td>0.73 (0.55–1.60)</td>
<td>1.5 (0.8–5.0)</td>
<td>2.4 (1.6–3.3)</td>
<td>10 (11.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 0 0 0</td>
<td>0 50</td>
<td>0.70 (0.51–1.67)</td>
<td>1.5 (0.9–2.7)</td>
<td>1.7 (0.9–3.1)</td>
<td>16 (32.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 0 0</td>
<td>0 32</td>
<td>1.07 (0.56–1.77)</td>
<td>3.0 (0.8–6.0)</td>
<td>1.9 (1.8–4.2)</td>
<td>9 (28.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 0 0 0</td>
<td>0 187</td>
<td>0.97 (0.59–1.63)</td>
<td>2.3 (1.1–5.3)</td>
<td>2.1 (1.3–4.0)</td>
<td>59 (32.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0 0 0</td>
<td>1 33</td>
<td>0.68 (0.48–1.56)</td>
<td>2.2 (0.9–5.4)</td>
<td>2.8 (1.6–4.6)</td>
<td>14 (42.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 0 0 1</td>
<td>1 116</td>
<td>0.87 (0.56–1.26)</td>
<td>1.9 (0.7–4.7)</td>
<td>2.0 (1.4–3.4)</td>
<td>42 (36.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1 0 0</td>
<td>0 131</td>
<td>0.86 (0.53–1.64)</td>
<td>2.1 (1.0–5.0)</td>
<td>2.2 (1.4–3.4)</td>
<td>90 (68.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1 0 1</td>
<td>1 121</td>
<td>1.05 (0.60–1.67)</td>
<td>2.0 (1.2–4.3)</td>
<td>2.5 (1.6–4.0)</td>
<td>97 (80.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 0 1 1</td>
<td>1 51</td>
<td>0.96 (0.67–1.58)</td>
<td>2.8 (1.5–6.6)</td>
<td>2.4 (1.5–4.0)</td>
<td>41 (80.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1 1 0</td>
<td>1 52</td>
<td>1.05 (0.72–1.64)</td>
<td>2.2 (1.6–5.8)</td>
<td>2.1 (1.6–3.2)</td>
<td>43 (82.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1 1 1</td>
<td>1 89</td>
<td>0.84 (0.60–1.36)</td>
<td>2.0 (1.1–4.1)</td>
<td>2.1 (1.5–3.1)</td>
<td>82 (92.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P<ANOVA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.51</td>
<td>0.30</td>
<td>0.43</td>
<td></td>
</tr>
</tbody>
</table>

Data are presented as median (lower and upper quartiles).

a P 0.05, b P < 0.01; statistical significance vs ‘00001’ in women

Abbreviations: ANOVA, analysis of variance; others, see TABLES 1 and 3
their role in the development of endothelial dysfunction, an early stage of atherogenesis. Additionally, increased plasma visfatin/NAMPT levels were associated with carotid artery intima-media thickness, a surrogate marker of atherosclerosis in subjects with obesity and type 2 diabetes. Furthermore, as demonstrated by our previous analysis, increased plasma visfatin/NAMPT levels are typical especially for obese subjects with low-grade systemic inflammation.

The results of the present study show a more pronounced increase of plasma visfatin/NAMPT levels in women than in men with MS. It could be explained by more severe inflammation in obese women than in men. In line with previously published studies, we showed higher serum CRP levels in women with MS than in the corresponding subgroup of men (2.64 vs 2.09 mg/l, respectively). As a result, there was a higher percentage of subjects with CRP levels of 3 mg/l or higher in women than in men with MS (45.1% vs 39.6%, respectively). One of the potential explanations of the difference in CRP concentrations between men and women is the influence of estrogens. However, we analyzed the population of elderly postmenopausal women with a negligible frequency of hormone replacement therapy (0.2%) in the PolSenior population. Therefore, the explanation of the difference is rather a greater percentage of total body fat, and even more

<table>
<thead>
<tr>
<th>log(visfatin) × 1000</th>
<th>b</th>
<th>h^2 (%)</th>
<th>95% CI</th>
<th>t</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>metabolic syndrome, yes</td>
<td>40.88</td>
<td>34.99</td>
<td>11.68–70.085</td>
<td>2.75</td>
<td><0.01</td>
</tr>
<tr>
<td>serum albumin, g/l</td>
<td>5.028</td>
<td>18.13</td>
<td>0.03–10.022</td>
<td>1.97</td>
<td><0.05</td>
</tr>
<tr>
<td>log(interleukin 6), pg/ml</td>
<td>55.56</td>
<td>18.63</td>
<td>11.38–109.99</td>
<td>2.00</td>
<td><0.05</td>
</tr>
<tr>
<td>log(CRP), mg/l</td>
<td>37.39</td>
<td>20.59</td>
<td>25.51–72.25</td>
<td>2.10</td>
<td><0.05</td>
</tr>
<tr>
<td>age, y</td>
<td>–1.94</td>
<td>19.68</td>
<td>–3.80 to –0.09</td>
<td>2.06</td>
<td><0.05</td>
</tr>
<tr>
<td>constat</td>
<td>–129.92</td>
<td>–</td>
<td>–415.35 to 155.55</td>
<td>–0.89</td>
<td>0.372</td>
</tr>
</tbody>
</table>

Abbreviations: see Table 1

FIGURE 2 Deming regression plot between plasma visfatin/NAMPT concentrations measured with enzyme-linked immunosorbent assay (ELISA) and enzyme immunoassay (EIA) in 227 subjects
considerably, of visceral fat, a source of proinflammatory cytokines and visfatin/NAMPT per se, in women than in men. This hypothesis is also supported by a significantly higher serum IL-6 concentration in women with MS than in those without MS (2.1 vs 1.8 pg/ml, respectively) and a similar concentration in the corresponding groups of men (2.2 vs 2.1 pg/ml, respectively). It is in line with other studies showing higher levels of inflammatory markers in women with MS, possibly the effect of more prevalent visceral obesity among women. One of these obesity-related inflammatory markers is IL-6, a well-known pro-inflammatory cytokine with increased concentrations in subjects with MS and type 2 diabetes.

In our study, we found a more prevalent low serum HDL cholesterol concentrations and hypertriglyceridemia in women than in men (41.8% vs 26.7% and 32.1% vs 23.3%, respectively) and in subjects with MS than in those without MS (55.7% vs 7.7%, 44.3% vs 1.7% in women, respectively, and 41.2% vs 7.7% and 39.3% vs 2.2% in men, respectively). The results are to a large extent in accordance with other epidemiological studies showing higher prevalence of visceral obesity, low HDL cholesterol concentrations, high BP, and abnormal glucose metabolism with a higher number of MS components in women in analysis of a large cohort of 30,111 women from the Nurses’ Health Study and 16,695 men from the Health Professional Follow-up Study. The percentage of diabetic subjects was higher (although not significantly) among women than among men (25.1% vs 21.7%, respectively). It is in line with previously published data showing higher prevalence of diabetes mellitus in women in developed countries and in China. Only in developing countries, the prevalence of diabetes is greater among men. The greater prevalence is probably due to a higher percentage of visceral fat accumulation in women.

Visceral adipose tissue is the main source of cytokines and free fatty acids involved in the development of liver IR, resulting in abnormalities in the lipid profile. Thus, the frequent prevalence of visceral obesity in women is the cause of low-grade inflammation, IR, dyslipidemia, and hypertension. It should be noted that visceral fat distribution in women increases with age and is particularly common in postmenopausal women. In addition, IR related to visceral obesity may increase hepatic CRP production.

Notwithstanding the more pronounced visceral obesity that leads to a higher level of low-grade inflammation, more advanced metabolic disturbances reported in women in comparison with men with MS, and associated with increased levels of visfatin/NAMPT, may be a marker of the severity of disturbances, classified as MS, and potential indicator of its complications. However, relatively small differences in plasma visfatin/NAMPT levels between the different numbers of MS components preclude their use in clinical practice.

The main new data presented in our study is the lack of the association between visfatin/NAMPT and the number of MS components showed with EIA, but the severity of systemic inflammation associated with excess visceral fat. Moreover, we showed that visfatin/NAMPT levels are higher only in obese women with MS and not in men as reported previously, reflecting that disturbances in adipokine release are secondary to obesity more pronounced in women. The use of a more specific assay for visfatin/NAMPT determination showed that its level is not associated with glucose and insulin levels. This observation is inconsistent with our previously published data obtained with EIA and supports the hypothesis that visfatin/NAMPT should be considered as a marker of inflammation not directly involved in the homeostasis of glucose metabolism.

Our study has a number of limitations related to its cross-sectional design. First, the establishment of the cause–effect relationship was not possible. Additionally, we were unable to demonstrate which of the MS components had a greater impact on plasma visfatin/NAMPT levels. However, the strength of our study are the statistical analyses including a large group of elderly subjects with comprehensive biochemical characteristics and the appropriate method (ELISA) of the visfatin/NAMPT measurement.

In conclusion, our study showed that plasma visfatin/NAMPT levels are increased only in elderly women with MS. It is difficult to distinguish the components of MS specifically associated with increased plasma visfatin/NAMPT levels.

Contribution statement

PK, MO-G, and JC conceived the idea for the study. MM, TZ, AS, and AW contributed to the design of the research. MB-W and AB assessed visfatin/NAMPT levels. WK and PO were involved in data collection. AO performed the statistical analysis. JC coordinated funding for the project. All authors edited and approved the final version of the manuscript.

Acknowledgments

The PolSenior study was a publicly funded project No. PBZ-MEIN-9/2/2006, Ministry of Science and Higher Education. NAMPT (visfatin) assessments were covered by a grant from the National Sience Centre (No. DEC 2012/07/B/NZ5/02339).

REFERENCES

ARTYKUŁ ORYGINALNY

Stężenie wisfatyny/fosforybozylotransferazy nikotynamidu (wisfatyna/NAMPT) w osoczu u osób starszych z zespołem metabolicznym

Piotr Kocelałk, Magdalena Olszanecka-Glinianowicz, Aleksander J. Owczarek, Wojciech Krupa, Patrycja Obirek, Maria Bożentowicz-Wikarek, Aniceta Brzozowska, Małgorzata Mossakowska, Tomasz Zdrojewski, Anna Skalska, Andrzei Więcek, Jerzy Chudek

1 Zakład Promocji Zdrowia i Leczenie Otyłości Katedry Patofizjologii, Wydział Lekarski w Katowicach, Śląski Uniwersytet Medyczny, Katowice
2 Zakład Statystyki Katedry Analizy Instrumentalnej, Wydział Farmacji i Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny, Katowice
3 Zakład Patofizjologii Katedry Patofizjologii, Wydział Lekarski w Katowicach, Śląski Uniwersytet Medyczny, Katowice
4 Międzynarodowy Instytut Biologii Molekularnej i Komórkowej w Warszawie, Warszawa
5 Katedra Nacząścienia Tętniczego i Diabetologii, Gdański Uniwersytet Medyczny, Gdańsk
6 Katedra Chorób Wewnętrznych i Gerontologii, Uniwersytet Jagielloński, Collegium Medicum, Kraków
7 Katedra Nefrologii, Transplantacji i Chorób Wewnętrznych, Wydział Lekarski w Katowicach, Śląski Uniwersytet Medyczny, Katowice

SŁOWA KLUCZOWE
insulinooporność, mikrozapalenie, wisfatyna/NAMPT, zespół metaboliczny

STRESZCZENIE

WPROWADZENIE Tkanka tłuszczowa trzewna jest głównym źródłem wisfatyny/ fosforybozylotransferazy nikotynamidu (wisfatyna/NAMPT), adipokiny prozapalnej, której rola w patogenezie składowych zespołu metabolicznego (ZM) takich jak nadciśnienie tętnicze, zaburzenia gospodarki węglowodanowej oraz zaburzenia gospodarki lipidowej pozostaje niejasna, także z powodu stosowania do oznaczania jej fragmentów C-końcowych zestawów o niskiej swoistości.

CELE Celem badania była ocena związku pomiędzy składowymi ZM oraz osoczowym stężeniem wisfatyny/NAMPT w populacji osób w podeszłym wieku.

PACJENCI I METODY Analizą objęto 2174 osoby w podeszłym wieku z populacji badania PolSenior bez niewydolności serca, ciężkiej przewlekłej choroby nerek, choroby nowotworowej oraz niedożywienia. ZM definiowano na podstawie kryteriów International Diabetes Federation. Stężenie wisfatyny/NAMPT w osoczu oznaczono przy użyciu wysoce swoistej metody ELISA. Oznaczono także stężenia hs-CRP, interleukiny 6 (IL-6) oraz insuliny, a dla oceny insulinooporności zastosowano wskaźnik HOMA-IR.

WYNIKI ZM częściej rozpoznawano u kobiet niż u mężczyzn (71,2% vs 56,8%, p <0,001); u kobiet odnotowano również większą częstość wszystkich składowych ZM z wyjątkiem cukrzycy typu 2. U kobiet z ZM stwierdzono podwyższone stężenia hs-CRP, interleukiny 6 (IL-6) oraz insuliny, a dla oceny insulinooporności zastosowano wskaźnik HOMA-IR. Stężenia wisfatyny/NAMPT były wyższe u kobiet z ZM w porównaniu z kobietami bez ZM (1,06 ng/ml [0,65–1,87] vs 0,85 ng/ml [0,54–1,40]; p <0,001), natomiast nie zaobserwowano różnic w jej stężeniu u mężczyzn (odpowiednio: 0,97 ng/ml [0,59–1,61] vs 0,90 ng/ml [0,56–1,60]; p = 0,5). Silniejszy związek liczby składowych ZM ze stężeniem wisfatyny/NAMPT stwierdzono u kobiet.

WNIOSKI Stężenie wisfatyny/NAMPT w osoczu jest wyższe wyłącznie u kobiet w podeszłym wieku z ZM. Trudno wyróżnić składowe ZM szczególnie związane z podwyższonym stężeniem wisfatyny/NAMPT.