Recent advances in understanding the clinical relevance of antiplatelet alloantibodies

Katarzyna Guz1, Małgorzata Uhrynowska1, Izabella Kopec2, Marzena Dęb ska3, Anne Husebekk4, Ewa Brojer1

1 Institute of Hematology and Transfusion Medicine, Department of Hematological and Transfusion Immunology, Warsaw, Poland
2 Institute of Hematology and Transfusion Medicine, Outpatient Department of Hematological Immunology for Pregnant Women, Warsaw, Poland
3 Medical Centre of Postgraduate Education, Department of Obstetrics and Gynecology, Warsaw, Poland
4 Institute of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway

Correspondence to:
Prof. Ewa Brojer, MD, PhD, Instytut Hematologii i Transfuzjologii, Zakład Immunologii Hematologicznej i Transfuzjologicznej, ul. Chocimska 5, 00-957 Warszawa, Poland, phone: +48 22 349 66 11, e-mail: ebrojer@ihit.waw.pl

Received: November 2, 2016.
Revision accepted: February 3, 2017.
Published online: February 3, 2017.
Conflict of interest: AH holds shares in Prophylix Pharma, a company trying to develop prophylaxis for FNAIT.

Pol Arch Intern Med. 2017; 127 (3): 190-194
doi:10.20452/pamw.3932
Copyright by Medycyna Praktyczna, Kraków 2017

KEY WORDS
human platelet antigens, fetal and neonatal alloimmune thrombocytopenia, platelet transfusion refractoriness, posttransfusion purpura

ABSTRACT
Alloimmunization to human platelet antigens (HPAs) may occur either during pregnancy, when a HPA-negative mother gives birth to a newborn who inherits HPAs from the father, or following blood transfusion or stem cell transplantation. Antiplatelet alloantibodies do not cause thrombocytopenia in a patient, but their detection must always be recorded in medical records because they may induce fetal and neonatal alloimmune thrombocytopenia in present and all subsequent pregnancies, platelet refractoriness, posttransfusion purpura, or prolonged thrombocytopenia with engraftment failure after stem cell transplantation. Passive transfer of platelet alloantibodies through transfused blood components may trigger thrombocytopenia and severe posttransfusion reactions in the recipient. In a Caucasian population, such clinical outcome of platelet alloimmunization is mostly due to anti-HPA-1a antibodies, less frequently to anti-HPA-5b, anti-HPA-1b, and others. Information on anti-HPA alloantibodies is crucial for the prevention and treatment of their consequences.

Introduction
In this review, we discuss the current knowledge on alloimmunization with human platelet antigens (HPAs), including its pathophysiological mechanisms, clinical manifestations, and natural course, as well as for diagnosis and evaluation. We also describe the future directions to prevent their consequences. Alloimmunization by platelet antigens occurs mainly during or after pregnancy but also following blood transfusion and stem cell transplantation. It is a threat not only to pregnant women but also to recipients of transfused blood components and transplant stem cells, because it may induce platelet refractoriness, posttransfusion purpura (PTP), and prolonged thrombocytopenia with engraftment failure after stem cell transplantation. Passive transfer of platelet alloantibodies through transfused blood components may trigger thrombocytopenia and severe posttransfusion reactions in the recipient.

Pathophysiology of alloimmunization by platelet antigens
HPAs are expressed on the platelet membrane as polymorphic forms of glycoproteins. The single nucleotide polymorphisms in the encoding genes are responsible for the differences in the protein structure of antithetic antigens.1,2 To date, 35 HPAs expressed on 6 different platelet glycoproteins (GPIIb, GPIIIa, GPIbα, GPIbβ, GPIa, and CD109) have been described (Table 1). Most HPAs are expressed on GPIIIa as part of the GPIIb/IIIa (integrin α2bβ3) complex, which is the most important receptor of human platelets for fibrinogen, vitronectin, fibronec- tin, and von Willebrand factor. GPIIIa is also expressed on endothelial cells as part of the αVβ3 integrin, which is the receptor for vitronectin and other proteins. HPAs can trigger alloantibody production following pregnancy or platelet transfusion.

The most frequently detected alloantibodies in a Caucasian population are directed to HPA-1a antigen. The risk group for the development of these alloantibodies includes HPA-1a-negative individuals (2% of a Caucasian population).

Several authors described the mechanisms of alloantibody production.3,4 Our review is focused...
The second mechanism is involved in alloimmunization both from transfused leukoreduced platelets as well as during pregnancy. Additional mechanisms of antigen presentation, for example through exosomes from apoptotic allogeneic cells, have also been reported.4,5 The primary immune response occurs usually some days or weeks (2–4 weeks) after exposure. The persistence of alloantibodies in the patient’s blood varies. Usually the alloantibodies induced by pregnancy persist for decades or even a lifetime, whereas the levels of transfusion-induced alloantibodies more often decrease below the detection limit within 6 months.4,6 However, even though they disappear shortly after the first exposure, the next contact with the antigen (at transfusion, transplantation, or pregnancy) results in a rapid production of alloantibodies since memory B cells need no costimulatory signals to be activated.

This review focuses on the significance of anti-platelet alloantibodies for an adult patient, especially in the context of transfusion or transplantation. We present the pathogenesis of the complications involved. It is worth noting, however, that primary alloimmunization occurs most on the crucial steps or stages of this process relating to the production of alloantibodies directed to the antigens present on the blood cells. The first step of initiation of alloantibody production is the “foreign” antigen presentation. Blood cell antigens on platelets as well as those on red blood cells (RBCs) are presented to the recipient or maternal CD4+ T cells through T-cell receptors in the context of human leukocyte antigen (HLA) class II molecules present on antigen-presenting cells. As a result, the T cells become activated. Several costimulatory signals are involved: type 2 helper T cells, a subset of CD4+ T-helper cells, secrete interleukin (IL)-4, IL-5, IL-6, and IL-10, which finally activates B cells and initiates the primary antibody response. Single B cells become memory cells and initiate secondary alloantibody response at subsequent exposure to HPA.

There are 2 ways in which the antigens are presented: by donor antigen-presenting cells (ie, monocytes, macrophages, dendritic cells, B cells in platelet concentrate [PC]), or by recipient antigen-presenting cells, after the transfused platelets are digested and recognized as foreign.4 Both mechanisms are involved in alloimmunization related to the transfusion of nonleukoreduced PCs. The second mechanism is involved in alloimmunization both from transfused leukoreduced platelets as well as during pregnancy. Additional mechanisms of antigen presentation, for example through exosomes from apoptotic allogeneic cells, have also been reported.4,5

The primary immune response occurs usually some days or weeks (2–4 weeks) after exposure. The persistence of alloantibodies in the patient’s blood varies. Usually the alloantibodies induced by pregnancy persist for decades or even a lifetime, whereas the levels of transfusion-induced alloantibodies more often decrease below the detection limit within 6 months.4,6 However, even though they disappear shortly after the first exposure, the next contact with the antigen (at transfusion, transplantation, or pregnancy) results in a rapid production of alloantibodies since memory B cells need no costimulatory signals to be activated.

This review focuses on the significance of anti-platelet alloantibodies for an adult patient, especially in the context of transfusion or transplantation. We present the pathogenesis of the complications involved. It is worth noting, however, that primary alloimmunization occurs most
TABLE 2 Clinical consequences of the presence of anti-HPA alloantibodies

<table>
<thead>
<tr>
<th>Alloantigens involved</th>
<th>Treatment/Prevention</th>
</tr>
</thead>
</table>
| Fetal and neonatal alloimmune thrombocytopenia | During pregnancy: intravenous immunoglobulin, steroids
In the newborn: transfusion of HPA negative PCs from the mother or donor, intravenous immunoglobulin |
| Platelet transfusion refractoriness* | Transfusion of HPA-compatible PCs, intravenous immunoglobulin, immunosuppressive treatment, massive prophylactic PCs, plasma exchange, transfusion of frozen autologous PCs |
| Posttransfusion purpura | Transfusion of HPA-compatible blood components |
| Transplantation-mediated alloimmune thrombocytopenia | Transfusion of HPA-compatible PCs, plasma exchange before stem cell transplantation |
| Passive alloimmune thrombocytopenia | Individuals with anti-HPA alloantibodies should be deferred from regular blood donation; however, they can serve as donors of PCs for alloimmunized patients after removing of plasma with antibodies |

* Involvement of anti-HLA, the main source of refractoriness and ABO antigen incompatibility, is not included.

Abbreviations: HPA, human platelet antigen; PC, platelet concentrate

often during pregnancy and anti-HPA alloantibodies are detected after delivery of a newborn with fetal and neonatal alloimmune thrombocytopenia (FNAIT) or during screening of pregnant women for risk of FNAIT. Such screening programs were performed in several countries, including Poland.7-12 Information on the pathogenesis, clinical symptoms, and incidence rate of FNAIT is valuable not only for gynecologists but also for family doctors, specialists in internal medicine, and hematologists because the women usually turn to them for support once alloantibodies are detected. It happens that the diagnosis of FNAIT after delivery of a thrombocytopenic newborn is disregarded by gynecologists since from their point of view the information is relevant only for the next pregnancy.

FNAIT is usually recognized when the neonate presents minor (petechiae or purpura) or severe (intracranial hemorrhage) bleeding. The diagnosis may be incidental when the newborn presents thrombocytopenia from no other causes. FNAIT can also be detected prenatally if the fetus is diagnosed with intracranial hemorrhage or ventriculomegaly.13-17 The diagnosis of FNAIT consists in detection of an anti-HPA alloantibody in maternal blood and identification of its specificity. The diagnosis is confirmed by HPA genotyping of the parents and the newborn.18-21 Most often the diagnosis refers to HPA-1a-negative women, who produce alloantibodies to the fetal HPA-1a alloantigen inherited from the father. Anti-HPA-1a alloantibodies are also detected in screening programs for pregnant women which are performed with the aim of preventing this rare but severe disorder. Such programs involve HPA-1a antigen tests for pregnant women. All HPA-1a-negative (HPA-1bb) women (~2% of the population) are at risk of anti-HPA-1a production. An “HPA antibody card” is issued for every HPA-1a-negative woman and for every pregnant woman affected by FNAIT. The card informs that the woman should be examined for anti-HPA alloantibodies during the next pregnancy or whenever she requires transfusion or transplantation. It should be stressed that alloantibodies do not cause thrombocytopenia in the mother and there is no need to monitor or check her platelet count. However, if a thrombocytopenic woman (eg, idiopathic thrombocytopenia) is HPA-1a negative, she is also at risk of developing alloantibodies with all the ensuing consequences.

Our recent study performed during the screening program “Prevention of fetal neonatal alloimmune thrombocytopenia in Polish newborns” (PREVNAIT) demonstrated that alloantibodies against HPA-1a antigen can be detected in about 1 in 500 pregnant women.22 Schnaidt and Wernet3 found that up to 4.2% of previously pregnant female blood donors had circulating anti-HPA alloantibodies (most often anti-HPA-5b, anti-HPA-1a, and anti-HPA-5a). All these women are at risk of posttransfusion and posttransplantation adverse reactions. Alloimmunization by platelet antigens should therefore be of interest not only to gynecologists and obstetricians but also to general practitioners, hematologists, and specialists in transfusion medicine.

Pathogenesis of posttransfusion and posttransplantation reactions caused by anti-HPA Anti-HPA-1a alloantibodies may be responsible for immunological platelet transfusion refractoriness and for rare but severe posttransfusion reactions, for example PTP.9,22 They may also induce prolonged thrombocytopenia and stem cell engraftment failure.23,25
Immune platelet refractoriness is mostly observed in patients with anti-HLA class I antibodies. However, in about 2% to 10% of refractory patients, anti-HPA alloantibodies which cause platelet destruction are detected. Anti-HPA alloantibodies are also present in around 15% to 20% of patients with anti-HLA class I antibodies. Most of them develop during pregnancy and some are produced following transfusions of nonleukoreduced blood components.

As described above, previously unsensitized patients develop primary immune response and produce antiplatelet alloantibodies approximately 3 to 4 weeks after transfusion, whereas patients who were previously immunized (as a result of transfusion, pregnancy, or organ transplant) develop antiplatelet alloantibodies as early as 4 days following the procedure. Platelet-specific alloantibodies responsible for refractoriness are usually directed to HPA-1b and HPA-5b antigens; other specificities (-1a, -15a, -15b, -3a, -2b, -2a) of anti-HPAs are detected occasionally

Alloantibodies coat the transfused platelets, which are then phagocytosed by macrophages in the recipient’s liver, spleen, and other tissues. Refractoriness is mostly observed in female patients (approximately 75% of cases) and in recipients of multiple transfusions (>20).

The desired platelet increment in patients with anti-HPA alloantibodies is achieved by administration of PCs without the platelet antigen that caused alloimmunization of that particular patient. In most cases, it means that the patient requires PCs from HPA-1b, -5b, -1a, or another antigen-negative donors, and such components are available in most blood transfusion centers in developed countries.

Other approaches—though not fully successful—are directed towards blocking platelet destruction by intravenous immunoglobulin infusions, which results in immunosuppression (reduction of alloantibody production), absorption of alloantibodies by massive prophylactic PCs, or their dilution or removal by plasma exchange. Transfusion of autologous cryopreserved platelets is still another option for alloimmunized refractory patients, if HLA and HPA compatible donors are unavailable.

PTP is a rare reaction or complication characterized by acute thrombocytopenia in a previously unthrombocytopenic patient with the 10% to 20% risk of mortality. It presents within 1 week after transfusion and most often after transfusion of RBC concentrates contaminated by platelets. In 90% of cases, PTP is caused by anti-HPA-1a and it concerns women. The patient’s alloantibodies bind to the “foreign” antigen on transfused platelets and destroy them. The detrimental effect of alloantibodies against foreign antigen expands and involves destruction or loss of the patient’s antigen-negative platelets. Several explanations have been suggested. Roubinian and Leavitt summarized them as follows: 1) immune complexes involving the alloantibody and the foreign antigen bind platelets via the platelet Fc receptor and induce their clearance; 2) soluble platelet antigens from the transfused component stick to the patient’s platelets rendering them susceptible to immune-mediated destruction once the alloantibody binds to the passively adhered antigen; and 3) autoreactivity of the alloantibody presents when the patient is reexposed to the foreign platelet-specific antigen.

An individual positive for anti-HPA alloantibodies as a blood donor Although rarely, passive transfer of platelet alloantibodies through transfused blood components may cause thrombocytopenia. This needs to be differentiated from other causes such as PTP, heparin-, or drug-induced thrombocytopenia.
In general, HPA-1a-negative women with anti-HPA-1a alloantibodies should be deferred from blood donation but they can serve as donors of platelets for immunized patients, including a newborn with FNAIT, provided the plasma with antibodies is removed. Such needs often occur if HPA-1a-negative donors of PCs are not available. In the future, women with anti-HPA-1a antibodies may become donors of plasma dedicated for preparation of vaccines against FNAIT.17

Acknowledgments This paper was supported by the Polish-Norwegian Research Program conducted by the National Centre for Research and Development within the framework of the Norwegian Financial Mechanism for years 2009–2014; project agreement No. Pol-Nor/203111/69/2013.

REFERENCES