Insect sting allergy in adults: key messages for clinicians

Marita Nittner-Marszalska¹, Ewa Cichocka-Jarosz²

1 Department of Internal Disease, Geriatrics and Allergology Medical University of Wroclaw, Wroclaw, Poland
2 Department of Pediatrics, Jagiellonian University Medical College, Kraków, Poland

ABSTRACT

During their lifetime, 94.5% of people are stung by wasps, honeybees, hornets, or bumble-bees (order Hymenoptera). After a sting, most people show typical local symptoms, 5% to 15% develop local allergic reactions, and 3% to 8.9%—systemic allergic reactions (SARs), which may be potentially life-threatening in about 10% of them. In mild forms of Hymenoptera-venom allergy (HVA), the leading symptoms are urticaria and edema (grades I and II, respectively, according to the Mueller classification). Severe SARs are classified as grade III (respiratory symptoms) and IV (cardiovascular symptoms). Rare manifestations of HVA are Kounis syndrome and takotsubo cardiomyopathy. All patients after an SAR require standard (skin test, IgE, tryptase) or comprehensive (component diagnosis, basophil activation test) allergy testing. All patients with severe systemic symptoms (hypertension, disturbances in consciousness) should be tested for mastocytosis. Additionally, a relationship was found between the severity of HVA symptoms and intake of angiotensin-converting enzyme inhibitors (ACEIs). There is a similar concern, although less well-documented, about the use of β-blockers. Patients with HVA who have experienced a SAR are potential candidates for venom immunotherapy (VIT), which is effective in 80% to 100% of individuals treated for 3 to 5 years. An increased risk of a VIT failure has been reported in patients with systemic mastocytosis and those treated with ACEIs. In certain groups (beekeepers, patients who develop a SAR to stings during a VIT with a standard dose, as well as those with a SAR to maintenance doses of VIT), a twice higher maintenance dose is recommended. Indications, contraindications, treatment protocols, and vaccine doses are regulated by the international guidelines of allergy societies.

The occurrence of Hymenoptera-venom allergy

Allergic reactions to insect bites result most frequently from stings of flying insects of the Hymenoptera order. From among over 100,000 species of Hymenoptera, the ones mainly responsible for sting reactions are usually honeybee (Apis mellifera) as well as wasps and hornets (eg, Vespa germanica, V. vulgaris, V. rufa, Vespas sp.). However, potential perpetrators of Hymenoptera allergy are diverse and vary with geography. In southern Europe, there are paper wasps (Polistinae subfamilies); in the United States, there are fire ants (Solenopsis invicta); and in Australia, there are Jack jumper ants (Myrmecia pilosula) that seem to cause more problems. A large number of Hymenoptera species, their ways of feeding, and their aggressive defense behavior result in as many as 56.6% to 94.5% of people experiencing at least 1 sting in their lives.¹

In most affected persons, a Hymenoptera sting results in local itching and mild induration. There are some individuals, however, who additionally respond to a sting by developing sensitization manifested by the presence of venom-specific immunoglobulin E (IgE) antibodies (vsIgE) to various components of insect venoms (in honeybee venom, 12 allergens have been identified so far: Api m1 – Api m12; in wasp venom, 5 allergens have been identified: Vesp v1, V. v 2, Vesp v3, Vesp v5, and Ves v 6).² Venom sensitization is the key factor for but is not synonymous with venom allergy. Sensitization to Hymenoptera venom may be asymptomatic (hypersensitivity not clinically relevant) or symptomatic defined as Hymenoptera-venom allergy (HVA). The asymptomatic sensitization is common and found in 9.3% to 40.7% of the general population and in 30% to 60% of beekeepers (which reflects the effect of exposition to
sting on sensitization to insect venoms). Only a part of venom-sensitive people develop clinical symptoms of allergic reactions, which can be large local (LLR) or systemic (SAR). LLRs are the most frequent manifestation of HVA. Most studies in adult populations report the frequency of LLRs between 5% and 15%, but some studies—even up to 26%. Among beekeepers, the frequency of LLR ranges between 12% and 38%. SARs in the course of HVA occur in 3% to 8.9% of adults. The prevalence of systemic symptoms of HVA is significantly higher in 2 groups of patients: beekeepers (14%–43%) and adult patients with mastocytosis. Not all HVA adult patients suffering from mastocytosis present with an equally high percentage of systemic symptoms: the highest occurs in patients with indolent systemic mastocytosis without skin lesions (ISMs–[–]: 73%) and in patients with the baseline serum tryptase (bsT) level in the range from 20.4 to 29.9 μg/l. The lowest percentage of systemic symptoms of HVA occurs in patients with systemic mastocytosis (SM) and bsT levels below 6.1 and above 191 mcg/l or in aggressive subtypes of SM (10%). The rarest mastocytosis variant associated with HVA is cutaneous mastocytosis (CM: 0%–7%).

Though HVA-SAR are potentially life-threatening, the reported mortality rates are low, ranging from 0.03 to 0.48 deaths per 1 000 000 persons per year. However, the mortality data may be underestimated because many deaths from stings go unrecognized or are misinterpreted. Deaths are reported mainly in male adults.

Clinical manifestations of Hymenoptera venom allergy and possible reactions to a subsequent sting. Insect stings normally cause painful, sometimes itching and burning, local indurations not exceeding 2 to 3 centimeters in diameter. They usually disappear after a few hours but, at times, they persist for several days. Some individuals develop large swellings (not only from the insect stings, but also from a variety of insect bites), which may indicate a nonallergic irritability of the skin.

Allergic reactions to stings can be local or systemic. An LLR is defined as a swelling at the sting site exceeding 10 centimeters, developing from a few minutes to several hours after the event. LLRs located on the arms or legs can be very extensive and can last for days or even weeks, limiting daily activities and physical functioning. Sometimes LLRs are accompanied by lymph node enlargement, lymphangitis, and fever. The latter symptoms have to be differentiated from serum sickness or from infections that rarely occur in patients with an LLR because the bacteriostatic qualities of Hymenoptera venoms are believed to prevent the formation of abscesses and the occurrence of infectious lymphangitis as complications following an insect sting. LLRs resulting from a sting on the head, especially in the periorbital area, can be manifested by the swelling of the eyelids, which may be confused with angioedema, which is one of the manifestations of SAR.

The spectrum of SARs, which are mostly IgE-mediated, is categorized by 2 classifications, each including 4 grades (Table 1). The classification by Mueller grades the major symptoms from mild to life-threatening events: I – urticaria, II – angioedema, III – respiratory disorders, and IV – anaphylactic shock. The other one, proposed by Ring and Messmer, characterizes the leading symptoms from the mildest (skin lesions), through not life-threatening cardiovascular reactions, followed by
Insect sting allergy in adults: key messages for clinicians

Patients manifesting type II of Kounis syndrome have coexisting atheromatous coronary disease. In such individuals, an acute allergic episode can induce plaque erosion or rupture manifesting as an acute myocardial infarction. Type III of Kounis syndrome occurs in patients with coronary disease after coronary stent implantation. Finally, the classic cardiac complication due to an insect sting is takotsubo cardiomyopathy, a nonspecific, transient, reversible left ventricular dysfunction, also known as broken heart syndrome or stress cardiomyopathy.

Apart from the general dangers associated with an insect sting, there is a specific one concerning pregnant women. An insect sting can cause uterine contraction, which may result in a spontaneous abortion. The symptomatology of nonallergic reactions to insect stings, both unusual and toxic symptoms, is presented in Table 2. The majority of reported unusual reactions are of neurological origin and include polyradiculomyelitis with tetraparesis (as in Guillain–Barré syndrome), epileptic cramps, extrapyramidal symptoms, and ischemic episodes with permanent central nervous damage.

Patients with Hymenoptera-venom allergy at high risk of a severe allergic reaction It is of great clinical importance to identify the risk factors that may predispose HVA individuals to develop SARs to a subsequent field sting. The following factors have been proposed as descriptive of this group: a history of a previous SAR (grade III or IV), concomitant cardiovascular diseases, treatment with

<table>
<thead>
<tr>
<th>Proposed term</th>
<th>Primary definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>mast-cell hyperplasia<sup>a</sup></td>
<td>increased numbers of monoclonal MCs, an underlying disease usually found and no signs of MCA detectable, also seen in lymphoproliferative disorders and after administration of stem-cell factor</td>
</tr>
<tr>
<td>mastocytosis (± MCAS)</td>
<td>increased number of (mono)clonal MCs</td>
</tr>
<tr>
<td>systemic mastocytosis</td>
<td>SM criteria (3 minor or 1 major + 1 minor) met (SM variants, including MCL)</td>
</tr>
<tr>
<td>cutaneous mastocytosis</td>
<td>MIS criteria fulfilled but SM criteria not met (CM variant)</td>
</tr>
<tr>
<td>mastocytoma</td>
<td>localized, benign, presumably (mono)clonal</td>
</tr>
<tr>
<td>mast-cell sarcoma</td>
<td>localized, aggressive (mono)clonal MCs</td>
</tr>
<tr>
<td>mast-cell activation syndrome</td>
<td>MCA by the criteria of diagnosis<sup>30</sup></td>
</tr>
<tr>
<td>primary MCAS</td>
<td>CM, SM or "(mono)clonal MCAS"</td>
</tr>
<tr>
<td>secondary MCAS</td>
<td>atopy or other disorder associated with MCA</td>
</tr>
<tr>
<td>idiopathic MCAS</td>
<td>no reason for MCA found</td>
</tr>
<tr>
<td>myelomastocytic conditions</td>
<td>MC lineage involvement in myeloid neoplasms</td>
</tr>
<tr>
<td>tryptase AML</td>
<td>criteria for SM or MML not met, tryptase + blasts</td>
</tr>
<tr>
<td>myelomastocytic leukemia<sup>a (± MCAS)</sup></td>
<td>MC lineage involvement in MDS/AML with at least 10% of cells being clonal MCs in bone marrow and/or peripheral blood smears and no evidence/criteria for SM</td>
</tr>
</tbody>
</table>

Abbreviations: AML, acute myeloid leukemia; CM, cutaneous mastocytosis; MCA, mast-cell activation; MCAS, mast-cell activation syndrome; MCL, mast-cell leukemia; MC, mast cell; MDS, myelodysplastic syndrome; MIS, mastocytosis in the skin; MML, myelomastocytic leukemia; SM, systemic mastocytosis

a MC hyperplasia is not an intrinsic MC disorder but is a reactive state that can be seen in a wide variety of conditions, and in many instances, the clinical significance and mechanisms of MC expansion remain unclear.
b MML has not yet been included in the official World Health Organization classification, although the condition is clearly defined by criteria, can clearly be discriminated from MCL, and is of clinical significance because of a poor prognosis of these patients (similar to MCL but worse than other AML and MDS because of drug resistance).

anaphylactic shock, up to cardiac arrest. Most systemic reactions begin within 30 minutes after a sting. Usually, the sooner such a reaction occurs, the more severe it is. Typically, SAR symptoms subside within a few hours, but in the case of 2-phase anaphylaxis, a relapse of symptoms is possible after 6 to 11 hours in 5% of the affected individuals.

Hypotension accompanying a SAR is a predictive factor for 2-phase anaphylaxis. The most severe and life-threatening scenario of HVA involves cardiovascular symptoms, for which a number of pathogenic factors can be responsible, including hypotension due to the hypovolemic shock, hypoxia, and the cardiotoxicity of mast-cell mediators released in the course of IgE-mediated reactions. Cardiovascular HVA symptoms include acute atrial flutter, atrial and ventricular fibrillation, and acute coronary syndrome in the form of myocardial infarction. Another cardiac condition that results from the concurrence of acute coronary syndromes with mastocyte activation induced by IgE (but also by non-IgE) hypersensitivity agents is Kounis syndrome.

Patients manifesting type I of Kounis syndrome have normal coronary arteries without predisposing factors for coronary artery disease. In such patients, an acute allergic challenge induces a coronary artery spasm with normal cardiac enzyme or troponin levels or a coronary spasm progressing to acute myocardial infarction with elevated cardiac enzyme and troponin levels. Patients manifesting type II of Kounis syndrome have coexisting atheromatous coronary disease.
Some patients had comorbidities. IHD was found in 10 and cardiomyopathies in 7 cases; among 12 individuals subjected to autopsy, patients had preexisting cardiovascular or lung diseases following an insect sting found that most of the patients with HVA who died from anaphylaxis due to insect stings had cardiovascular disease, as high as 60% for up to 20 years of follow-up. Cardiovascular diseases are also recognized as important factors increasing the risk of severe anaphylaxis after a sting. The major predictive factor determining the possibility of a subsequent SAR to a sting is the severity of the previous reactions: the more severe the previous reaction, the greater the risk of a subsequent reaction being of similar or higher severity. This correlation is illustrated by data from observational studies: the risk of a recurrence of severe systemic symptoms after a field sting in persons with SAR I and II ranges from 20% to 40%, while in patients with SAR III and IV, it is as high as 60% for up to 20 years of follow-up.

Cardiovascular diseases are also recognized as an important factor increasing the risk of severe anaphylaxis after a sting. The causative role for this mechanism is attributed to mastocyte, which is the key effector cell in anaphylaxis. Considering an increase in the density of mastocytes in the intima and adventitia of the arterial wall in patients with ischemic heart disease (IHD), a high concentration of mastocyte mediators in such a strategic place heightens the risk of a severe reaction to an allergen. Increased numbers of mastocytes that pose a risk of potentially severe reactions to allergens concern not only patients with IHD, but also those with other cardiac diseases, such as aortic valve stenosis (in the calcified areas of human stenotic aortic valves). A negative effect of cardiovascular diseases on the course of anaphylaxis is proved by the postmortem analyses of patients with HVA who died from anaphylaxis. A study analyzing 29 patients who died following an insect sting found that most of the patients had preexisting cardiovascular or lung diseases; among 12 individuals subjected to autopsy, IHD was found in 10 and cardiomyopathies in 7 (some patients had comorbidities).

The course of HVA-induced anaphylaxis may become more severe with the use of β-blockers and ACEIs, which are common in the treatment of hypertension, IHD, and heart failure. β-blockers are perceived as drugs that may aggravate cardiovascular manifestation and inhibit the efficiency of adrenaline used in the standard management of anaphylaxis. In turn, ACEIs may deepen hypotonia occurring in anaphylaxis through increasing the concentration of bradykinin (by inhibiting its degradation by ACEIs) as well as through hindering the compensatory vasoconstriction response induced by the renin–angiotensin system. The negative effect of ACEIs on the severity of anaphylactic reactions (potentialized by the concurrent use of β-blockers) has been confirmed by clinical and experimental studies. A multicenter study conducted in a group of 962 HVA patients suggested that the use of ACEIs constitutes a risk of a severe reaction to an insect sting. Patients with elevated bsT level (≥11.4 ng/ml) have more severe (mostly cardiovascular) symptoms and a higher risk of the occurrence of HVA symptoms after subsequent stings than those with normal bsT levels. This group includes mostly patients with ISM with and without skin lesions, patients with other forms of SM (the World Health Organization classification defines 7 variants of SM; Table 3), and those with monoclonal mastocyte activation syndrome (MMAS). MMAS, also known as the primary MC activation syndrome (MCAS) or clonal MC activation disorder, is diagnosed in patients with unexplained or recurrent anaphylaxis without skin lesions who do not fulfill the criteria for SM, have documented KIT-mutated clonal mastocytes, and usually express CD25 on bone-marrow mastocytes. A remarkable association between elevated bsT levels and the occurrence of cardiovascular symptoms in HVA patients does not only suggest a higher risk of an anaphylactic reaction to a subsequent sting.
in HVA patients with mastocytosis but also, in consequence, constitutes an obligatory indication for tryptase tests and diagnostic workup for primary mast-cell disorders in all HVA patients who present with cardiovascular symptoms and hypotonia after a sting. However, it must be stressed that in light of the recent reports, mastocyte disorders may also be suspected in patients presenting with a SAR with hypotension and showing no skin symptoms (urticaria, angioedema) irrespective of tryptase levels. In contrast, in patients with extremely high tryptase levels (above 191 ng/ml) and patients with an aggressive form of SM, severe systemic HVA symptoms are rare.

Elevated serum tryptase levels could be a risk factor for more severe systemic reactions and a higher mortality rate due to HVA in elderly people. A correlation between a significant increase in bsT levels and aging has been documented. The reason for this phenomenon is yet unknown. Beside mastocytosis, the possible causes of higher bsT levels also include other disease states associated with older age such as acute myelocytic leukemia, myelodysplastic syndromes, hypereosinophilic syndrome associated with the FLI1L1-PDGFRA mutation, or renal insufficiency.

Standard diagnostic procedures in patients with a suspicion of Hymenoptera-venom allergy Diagnostic tests for HVA are limited to patients with a history of a systemic reaction to the Hymenoptera sting. There is no other indication for the diagnostic workup for HVA. Its objectives are to: 1) verify the reaction grade and make an objective assessment of symptoms (medical history, tryptase levels); 2) identify the species that caused the symptoms; 3) determine the IgE-mediated pathomechanism of the reaction; and 4) define additional risk factors.

A carefully taken medical history is most important for the correct diagnosis of HVA. It is recommended to verify the anaphylactic origin of the sting reaction by the measurement of serum tryptase levels. To do that, blood volume of about 2 ml should be collected within 15 minutes to 3 hours following the onset of symptoms. After clotting, the sample must be centrifuged and stored at −20°C. Another blood sample should be taken again for the measurement of bsT levels after at least a few hours following the resolution of symptoms. Higher tryptase levels measured immediately after the sting as compared with bsT levels confirm anaphylaxis. High bsT levels are a risk factor for an SAR to an insect sting in the future. As mentioned above, in these patients, diagnostic procedures for mastocytosis should be performed in reference centers (bone marrow study, KIT-mutation analysis).

The aim of diagnostic procedures is to either demonstrate or exclude the presence of specific IgE to bee or vespid venoms by skin testing and serum-specific IgE tests, optimally after 3 to 6 weeks following the occurrence of an SAR. Testing is performed by skin prick tests with the allergen concentration at a range from 100 to 300 μg/ml. In the case of negative results, intradermal tests are performed (venom allergen solution [0.02 ml] with increasing concentrations from 0.001 to 1.0 μg/ml). Venom skin tests are the most sensitive for the diagnosis of HVA. Serum-specific IgE tests should be performed using the most sensitive methods. Depending on a country, the diagnosis of HVA is an outpatient or inpatient procedure.

IgE-negative patients (both negative vslgE and skin test results) constitute less than 2% of individuals reporting a history of allergic symptoms following a Hymenoptera sting. In such cases, the in vitro basophil activation test (BAT) is recommended, which is a flow cytometry-based functional assay that assesses the degree of cell activation after exposure to a certain concentration of venom. Basophils are identified by specific markers (CCR3+/CD33, CD123+HLA-DR+ and IgE+/CD203c+), and their activation is measured by means of monoclonal antibodies coupled to specific fluorochromes. In HVA, both specific surface activation markers CD203c and CD63 were found to have similar kinetics with the maximum expression detected after 20 minutes of allergen stimulation. The first BATs performed with recombinant allergens represent an additional step forward in developing highly sensitive in vitro tests for a specific diagnosis of HVA. BAT is performed only in specialized medical centers.

A common problem with an in vitro diagnosis of HVA is encountered in patients with double positive test results for bee (HBV) and wasp venom (VV), who constitute approximately 40% to 50% of all HVA cases. Sometimes, this double positivity reflects true double sensitization to both HBV and VV. More often, however, it is accounted for by “false double sensitization”, which is clinically irrelevant and can be based on the presence of homologous allergens both in HBV and VV (hialuronidase, dipetidylpeptidase, vitellogenin). Another cause of “false double sensitization” may be the presence of IgE antibodies directed against cross-reactive carbohydrate determinants, which are glycol-epitopes of the allergens. In this case, IgE antibodies are directed against an α-1,3-linked fucose residue of the N-glycan core found in insects and plants. New diagnostic methods based on the evaluation of IgE antibodies against individual allergenic molecules of venom (component-resolved diagnosis) have led to a significant advance in distinguishing true double sensitization from irrelevant cross-reactivity. The currently available venom allergenic components, Api m 1, Ves v 1, and Ves v 5, allow for a positive diagnosis of HV-allergic patients with the accuracy of 95% for VV allergy and 63% for BV allergy. Api m 3 and Api m 10 allergenic components are expected on the market soon, which should raise the sensitivity of BV diagnosis to 87.5%.
(antihistamines, systemic corticosteroids, short-acting β2-agonists) are the second-line treatment in anaphylaxis.42,43

All individuals with a past history of an anaphylactic reaction should be instructed in the use of and equipped with an anaphylactic kit (including adrenaline autoinjector), which they should always keep handy. They should also be referred to an allergy specialist.

Who requires venom immunotherapy? The only causative treatment of HVA is venom immunotherapy (VIT). This treatment is very effective as it reduces the risk of a recurrent SAR to about 5% in patients allergic to wasp venom and to 10% to 20% in those allergic to bee venom.44 VIT also significantly improves the quality of life in venom-treated individuals.45,46 VIT is the treatment of choice in patients fulfilling both clinical and immunological criteria: a severe generalized reaction to sting in the past medical history with respiratory or circulatory symptoms or both (grade III–IV according to Mueller) and the presence of vsIgE-antibodies to the venom of the responsible Hymenoptera species (any positive result of skin prick tests or intradermal tests or vsIgE, or

How to treat allergic reactions to field stings? Medical management of allergic symptoms after a sting depends on their severity. In the case of LLRs, topical therapy with a corticosteroid ointment combined with a moist dressing (applied 2–3 times daily) is recommended. For a prominent LLR, an H\textsubscript{1}-antihistamine and oral corticosteroids may be necessary. In rare cases of an LLR in the oral cavity that involve local swelling, aggressive treatment (as in systemic reactions) is required. In severe SARs, it is crucial to start an intervention as soon as possible. In the case of anaphylaxis, adrenaline is a life-saving treatment. When administered intramuscularly into the anterolateral part of the quadriceps muscle, it reaches the highest blood concentration after 8 minutes. Hence, this site is recommended for adrenaline application in all age groups.42

There are no absolute contraindications for adrenaline administration during anaphylaxis. As additional measures, the patient should be laid flat with legs raised as a protection from death due to empty superior vena cava/empty ventricle syndrome, oxygen should be given (flow, 6–10 l/min) and intravenous fluids (10 ml/kg within 10 minutes) should be administered. Other medications (antihistamines, systemic corticosteroids, short-acting β2-agonists) are the second-line treatment in anaphylaxis.42,43

All individuals with a past history of an anaphylactic reaction should be instructed in the use of and equipped with an anaphylactic kit (including adrenaline autoinjector), which they should always keep handy. They should also be referred to an allergy specialist.

<table>
<thead>
<tr>
<th>TABLE 4</th>
<th>Indications for venom immunotherapy according to the European and American guidelines35,48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of reaction in adults</td>
<td>Diagnostic tests (skin tests and/or IgE)</td>
</tr>
<tr>
<td>respiratory and/or cardiovascular symptoms – III/IV grade according to the Mueller classification</td>
<td>positive</td>
</tr>
<tr>
<td></td>
<td>negative</td>
</tr>
<tr>
<td>urticaria/edema – I/II if risk factors or reduced quality of life is present</td>
<td>positive</td>
</tr>
<tr>
<td></td>
<td>negative</td>
</tr>
<tr>
<td>large local</td>
<td>positive or negative</td>
</tr>
<tr>
<td>unusual reaction</td>
<td>positive or negative</td>
</tr>
</tbody>
</table>

a patients with frequent and unavoidable stings resulting in repeated large local reactions may benefit from venom immunotherapy (United States)

<table>
<thead>
<tr>
<th>TABLE 5</th>
<th>Relative and absolute contraindications to venom immunotherapy50</th>
</tr>
</thead>
<tbody>
<tr>
<td>relative contraindications</td>
<td>asthma partially controlled</td>
</tr>
<tr>
<td></td>
<td>autoimmune disorders in remission</td>
</tr>
<tr>
<td></td>
<td>malignant neoplasia(s)</td>
</tr>
<tr>
<td></td>
<td>angiotensin-converting enzyme inhibitors</td>
</tr>
<tr>
<td></td>
<td>children 2–5 years of age</td>
</tr>
<tr>
<td></td>
<td>human immunodeficiency virus infection (stages A, B) – CD4+ > 200/µl</td>
</tr>
<tr>
<td></td>
<td>psychiatric and/or mental disorders</td>
</tr>
<tr>
<td></td>
<td>chronic infections</td>
</tr>
<tr>
<td></td>
<td>immunodeficiencies</td>
</tr>
<tr>
<td></td>
<td>use of immunosuppressive drugs</td>
</tr>
<tr>
<td>absolute contraindications</td>
<td>asthma uncontrolled</td>
</tr>
<tr>
<td></td>
<td>autoimmune disorders in active forms (nonresponding to treatment)</td>
</tr>
<tr>
<td></td>
<td>pregnancy: initiation of venom immunotherapy is prohibited, while maintenance course is allowed</td>
</tr>
<tr>
<td></td>
<td>children <2 years of age</td>
</tr>
<tr>
<td></td>
<td>acquired immune deficiency syndrome</td>
</tr>
</tbody>
</table>
VIT is not recommended in patients with unusual, toxic, and atypical reactions. Moreover, it is not recommended in patients with extensive local reactions either, although, in the United States, a pilot study on selected cases of desensitization of patients with this type of a reaction was published. Other current contraindications to VIT according to the 2015 EACCI guidelines are more flexible nowadays than in the past (Table 5).

There are 2 steps of the VIT procedure: the initial (up-dosing) phase of immunotherapy with aqueous venom extracts and the maintenance phase with aqueous or depot venom extract. The initial phase of VIT may be performed according to 4 protocols which differ with respect to the time over which the maintenance dose is reached: slow (16–20 weeks); modified rush (6–8 weeks); rush (2–3 days), and ultra-rush (3.5 hours). The standard maintenance dose is equal to 100 μg administered at scheduled intervals of 4 to 12 weeks. The maintenance dose of venom extract should be increased to 200 μg in bee keepers, in patients who did not tolerate the insect sting at a dose of 100 μg, and in subjects with systemic side effects during the maintenance phase of VIT.

In patients with confirmed double sensitization, VIT with extracts of both wasp and bee venom is recommended. VIT should be continued for 3 to 5 years. After minimum 3 years of VIT, preferably after 5 years of VIT, a decision to stop VIT should be considered. Long-term protection after termination of VIT is established in patients treated longer than 3 years. Lifelong VIT is recommended in patients with mastocytosis.

Although VIT is very effective, in a few percent of HVA patients, there is a possibility of the treatment’s failure, the consequence of which may be recurrence of severe systemic reactions to a subsequent sting. The identified factors believed to be responsible for VIT failure include older age, coexistence of cardiovascular or pulmonary diseases, elevated hsT levels, mastocytosis, MC-related diseases, and allergic systemic reaction to venom injections. Currently, there are no laboratory tests that could confirm the efficacy of VIT. Good tolerance of filed sting or sting challenge with an insect may confirm protection achieved in the course of VIT. Sting challenges should be performed only in specialized centers according to the existing guidelines of allergy societies. The new possibility to assess VIT efficacy in the future may be provided by gene expression analyses.

VIT protects almost all HVA patients from future allergic symptoms. A major problem is the underdiagnosis and undertreatment of HVA patients who miss allergy specialist consultation. Medical doctors of all specialties must be informed about HVA and the possibility of its causal treatment. A Polish study on the current practice in HVA treatment by allergologists shows a high congruence with the EAACI guidelines.

REFERENCES

Insect Venom Allergy of the European Academy of Allergology and Clinical Immunology. Allergy. 1996; 51: 216-225.

Alergia na jad owadów – kluczowe informacje dla klinicystów

Marita Nittner-Marszalska¹, Ewa Cichocka-Jarosz²

¹ Klinika Chorób Wewnętrznych, Geriatrii i Alergologii, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu, Wrocław
² Klinika Chorób Dzieci, Katedra Pediatrii, Uniwersytet Jagielloński, Collegium Medicum, Kraków

STRESZCZENIE

W ciągu życia 94,5% ludzi doznaje użądlenia przez osy, pszczoly, szerszenie lub trzmiele (rząd: błonkoskrzydłe). W jego wyniku u większości ludzi występuje typowy odczyn miejscowy, u 5–15% pojawia się alergiczna reakcja miejscowa, u 3–8,9% alergiczna reakcja systemowa (systemic allergic reaction – SAR), która u ~10% z nich stanowi potencjalnie zagrożenie życia. Głównymi objawami w łagodnych postaciach alergii na jad owadów (Hymenoptera-venom allergy – HVA) są pokrzywka i obrzęk naczynioruchowy (odpowiednio I o i IIo wg klasyfikacji Muellera). Ciężkie odczyny alergiczne kwalifikowane są do IIIo (objawy ze strony układu oddechowego) i IVo (objawy sercowo-naczyniowe). Rzadkimi manifestacjami HVA są zespół Kounisa i kardiomiopatia takotsubo. Wszyscy pacjenci po przebytej SAR wymagają diagnostyki alergologicznej standardowej (testy skóry, IgE, poziom tryptazy) lub poszerzonej (diagnostyka komponentowa, test aktywacji bazofilów). Wszystkie osoby z ciężkimi objawami systemowymi (spadek ciśnienia, zaburzenia świadomości) wymagają diagnostyki w kierunku mastocytozy. Dodatkowo wykazano związek pomiędzy ciężkością objawów HVA a stosowaniem inhibitorów angiotensyny (angiotensin-converting enzyme inhibitors – ACEI). Podobne, choć mniej udokumentowane są zastrzeżenia dotyczące stosowania β-blokerów. Chorzy z HVA po przebytej SAR są potencjalnymi kandydatami do immunoterapii alergenowej (venom immunotherapy – VIT), która jest skuteczna u 80–100% leczonych przez 3–5 lat. Zwiększone ryzyko niepowodzenia tej terapii wykazano u chorych z systemową mastocytozą oraz u pacjentów leczonych ACEI. W wybranych grupach chorych (pszczelarze, osoby reagujące systemowo na użądlenia w trakcie VIT dawką standardową oraz osoby z reakcją systemową na kolejne dawki podtrzymujące VIT) zalecana jest dwukrotnie wyższa niż standardowo dawka podtrzymująca. Wskazania, przeciwwskazania, wybór schematu leczenia oraz wysokość dawek szczepionki są regulowane przez wytyczne międzynarodowych towarzystw alergologicznych.